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Abstract

The results in this paper are in a context of abstract elementary classes identified by Shelah and Villaveces in which th
amalgamation property is not assumed. The long-term goal is to solve Shelah’s Categoricity Conjecture in this context. Here w
tackle a problem of Shelah and Villaveces by proving that in their context, the uniqueness of limit models follows from categoricity
under the assumption that the subclass of amalgamation bases is closed under unions of bgeHinie®@asig chains.
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Introduction

The origins of much of pure model theory can be traced back sd€onjecture L5]. This conjecture was resolved
by M. Morley in his Ph.D. thesis in 19627]. Morley then questioned the status of the conjecture for uncountable
theories. Building on work of W. Marsh, F. Rowbottom and J.P. Ressayre, S. Shelah proved the statement fo
uncountable theories in 19709]. Out of Morley and Shelah’s proofs the progranstbility theory or classification
theory evolved.

While first-order logic has far reaching applications to othields of mathematics, there are several interesting
frameworks which cannot be captured by first-order logic. A classification theory for non-elementary classes will
open the door potentially to a multitude gf@ications of model theory to classil mathematics and provide insight
into first-ordemodel theory.

Shelah posed a generalization of.€onjecture toL,, ., as a test question to measure progress in non-first-order
model theory. Focus on non-elementary classes began to shift in the late seventies when Shelah, influenced by
Jénsson’s work in universal algebra (sd2[L3]), identified the notion ofabstract elementary class (AEC) to capture
many non-first-order logic2H] includingL, . andL, »(Q). An abstact elementary class is a class of structures of
the same similarity type endowed with a morphism satisfying natural properties such as closure under directed limits

Definition 0.1. K is anabstract elementary class (AEC) iff I is a class of models forosne vocabulary which is
denoted by (K), and the tass is equipped with a partial ordefy: satisfying the following:

(1) Closure under isomorphisms.
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(a) For everyM € K and evend (K)-strudureN if M = N thenN € K.
(b) Let N7, N2 € K andM31, M2 € K such ttat there existf; : Ny = M, (for| = 1, 2) saisfying f; € fo then
N1 <x Nz implies thatM1 <x M.

(2) < refines the submodel relation.

(3) If Mg, M1 < N andM is a sitbmodel ofM1, thenMg <x M1.

(4) (Downward Lowwenheim—Skolem Axiom) There isL@wenheim-Skolem number of K, denotedL S(KC) which is
the minimalk such tfat for everyN € K and everyA C N, thereexids M with A € M <x N of cardinality
K+ Al

(B)If (M; |i < 8) is a=<g-increasing and chain of modelsih
@) Ui s Mi € K,

(b) for everyj < 8, Mj <x ;s Mi and
(c) if Mi <k N for everyi < g, thenJ;_s Mi <x N.

Definition 0.2. For M, N € K a monomorphismf : M — N is called a<j-embedding or a <j-mapping iff
f[M] < N.

Notation 0.3. We wiite IC,, :=={M € K | [M|| = u}.
Remark 0.4. The Hanf number ok will be formally defined inDefinition 1.3.8 It is bounded b)El(zst<;<>)+.

Shelah extended his cafericity conjecture folL,, .-theories in the following form in49)], see also2€]:

Conjecture0.5 (Shelah’s Categoricity Conjecture). Let X be an abstract elementary class. If K is categorical in
some A > Hanf(K), then for every u > Hanf(KC), K is categorical in .

Definition 0.6. We sayKC is categorical in & whenever there existexatly one nodel in £ of cardinalityx up to
isomorphism.

Despite the existence of over 1000 published pages of partial results towards this conjecture, it remains open. Since
the mid-eighties, model theoristsweagoproached Shelah’s conjecturerfrawo different directions (seé] for a short
history). Shelah, M. Makkai and O. Kolman attacked the conjecture with set theoretic assunm@jpas8(]. On the
other hand, Shelah also looked at the conjecture under model theoretic assumpt8)31i8%]. The approach of
Shelah and A. Villaveces ir8B] involved abalance between set theoretic and model theoretic assumptions. This paper
further investigates the context &3] which wedelineate here:

Assumption 0.7. (1) K is an AEC with no maximal models with respect to the relatign,

(2) K is categorical in some fixedd > Hanf(C),

(3) GCH holds and

(4) a form of the weak diamond holds, naméiw(s’c"f?m) holds for everyu with © < A (seeDefinition 1.3.2.

The purpose of 33] was to bgin investigating the conjecture that the amalgamation property follows from
categoricity in a large enough cardinality. All of the other attempts to pfsgecture 0.5have made use of the
assumption of the amalgamation property which is a sufficient condition to define a reasonable notion of (Galois)-

type (se€Section ).
Definition 0.8. Let K be an abstract elementary class analcardinal> LS(K).

(1) We say thaM < K, is anamalgamation base if for every N1, N> € £, andgi : M — N; for (i =1, 2), there
are<y-embeddingd, (i = 1, 2) and a modeN such that the following diagram commutes:

f1
Ni —— N

o C

MTNZ

(2) An abstract elementary clakssatisfies themalgamation property iff every M € K is an amalgamation base.
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(3) We write 2™ for the class of amalgamation bases which ardinWe also useCi™ to denote the class of
amalgamation bases of cardinality

Remark 0.9. (1) The definition of amalgamation base varies across the literature. Our definition of amalgamation
base is weaker than an alternative formulation which does not put any restriction on the cardinilitsumd N,.
Under the assumption of the amalgamation property, these definitions are known to be equivalent. However, i
this context, where the amalgamation property is not aesl] we cannot guarantee the existence of the stronger
form of amalgamation bases.

(2) We get an equivalent definition of amalgamation base, if we additionally requirgithatl = idy fori =1, 2,
in the definition above. Se&][for detals.

It is conjectured that categoricity in a large enough caidinenplies the amalgamationrpperty. However, there
are examples of abstract elementary classes which are categorieaduncessivecardinals, but fail to have the
amalgamation property in larger cardinalitidd 34]. Shelah constructs an abstract elementary class whose models
are bipartite random graphs. Models of cardinakityin this class witness the failure of amalgamation. Intriguingly,
under the assumption of Martin’s Axiom, thitass of bipartite graphs is categoricaNgand®X;. On theother hand,
if one assumes a version of the weak diamond, Shelah proves that categobgigrid®; implies amalgamation in
N1 ([24] or see p] for an exposition). There are other natural exbapf abstract elementary classes which do not
saisfy the amalgamation property but are unstable such as the class of locally finite gt@ups [

Limited progress has been made to prove that amalgamation follows from categoricity. Kolman and Shelah manag
to prove this for AECs that can be axiomatized by &, sentewe withx a measurable cardinall{l]. They first
introduce limit models as a substituter featurated models, and then prove the uniqueness of limit models (see
Definition 1.2.7).

To better understand the relationship between the amalgamation property, categoricity and the uniqueness of lim
models, consider the questions of uniqueness and exisbéticgt models in classes which satisfy the amalgamation
property, but not are not necessarily categorical:

Remark 0.10. Even under the amalgamation property, the uniqgueness and existence of limit models do not come
for free. The existence requires stability (s8&][or [8]). The question of uniqueness of limit models is tied into
(supe)stability as well. Even in first-order logic, the uniqueness of limit models fails for un-superstable theories
(see B] or [29] for examples). The uniqueness of limit models has been proven in AECs under the assumption of
categoricity (L4,28], and here;Theorem 11.9.). Recently Grossberg, VanDieren and Villaveces identified sufficient
conditions (which are consequences of superstability) for the uniqueness of limit models in classes with the
amalgamation property].

The motivation for this paper is to elaborate on recent work of Shelah and Villaveces in which they strive to prove
under weaker assumptions than Kolman and Shelah that the amalgamation property follows from categoricity abov
the Hanfnumber. The first step in proving amalgamation is to show the uniqueness of limit models.

The uniqueness of limit models undassumption 0.7generalizes Theorem 6.5 a2§] where Shedh assumes
the full amalgamation property. The amalgamation property is use2lrirj seveal forms including the fact that
saturated models areadel homogeneous and that altitests of Ehrenfeucht—Most@ki models are amalgamation
bases. Shelah then uses the uniqueness of limit models to prove that the union of a ghaitwhted models js-
saturated, provided that the chain is of lengtix . This isone of the main steps in proving a downward categoricity
transfer theorem for classes with the amalgamation property.

In the Fall of 1999, we identified several problems wihelah and Villaveces’ proof of the uniqueness of limit
models from B3]. After two years of correspondence, Shelall dfillaveces conceded that they were not able to
resolve these problems. While these issues are undertaken in this paper, to date the proof of the uniqueness of lir
models has resisted a complete solution unsesumption 0.7 After presenting a partial solutiorTbeorem 11.9.)
of the unigueness of limit models and dissing this with Shelah at a Mid-Atlantic Mathematical Logic Seminar in
the Fall of 2001, we were not able to remove the extra hypothesis. The extra hypothesis was weakabed mg
paper provides a complete proof of an intermediate uniqueness result patching a gap that was f85nd ting
Fdl of 2002. The partial solution to the uniqueness of limit medkescribed here is in the context identified 88
(Assumption 0.Yunder the hypothesis:
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Hypothesis 1: Every continuous tower insiddas an amalgamabéxtenson inside¢ (seeSectbns 2and5 for the
definitions).

Remark 0.11. The model¢ in Hypothesis 1 is not the usual monster model. It is a weak substitute for the monster
model and is introduced iBection 2 Monster models, as we know them in first-order logic, are model homogeneous.
In the absence of thenealgamation property, modebmogeneous models may not exist.

In the context of 83], Hypothesis 1 is a consequence of the more natural Hypothesis 3¢stien 10.

Hypothesis 2: Fopn < A, theclass of amalgamation bases of cardinalitgdenoted byCZm) is dosed under unions
of <-increasing chains of length n*.

It seems reasonable to consider a weakening of Grossbatgisriediate Categoricity Conjecture which captures
Hypothesis 2:

Conjecture0.12. Let K bean AEC. If thereexistsa A > Hanf(K) such that K is categorical in A, then Kﬁm is closed
under unionsof length < w for all & with LS(K) < o < A.

Although Theorem 1.11 of Chapter 4 24 addresses a similar problem to Hypothesis 2, this statement may be
too ambitious to prove. An alternative hypothesis which also implies Hypothesis 1 is

Hypothesis 3: The union of ax-increasing chain of lengtk . of limit models of cardinality. is a limit model.

Hypothesis 3 may be more approachable as it is a relafitieedfirst-order consequence of superstability that the
union of a<-increasing chain of (T)-many saturated models is saturated.

Hypothesis 1 has relatives in the literature as well. Indee@4hjhere the amigamation propeytis not assumed,
Shelah identifies the llknbetween the existence of maximal eIementﬂC@; (a specialization of towers of length 1)

and 21 non-isomorphic models ix.
This paper is divided into three parts outlined below.

Part |. The first part summarizes the necessary definitions and background material. It also includes some new result
on p-splitting.

Section 1Galois types

Section 2Limit models

Section 3Limit models are amalgamation bases

Section 4 u-splitting

Section 5Towers

Part I . Here we provide a complete proof of the uniqueness of limit models under HypothesisAssmahption 0.7

Section 6Relatively full towers

Section 7Continuous<¢, ,-extensions
Section 8Refined oderings on towers
Section 9Uniqueness of limit models

Part I11. In this part of the paper we include a partial result in the direction of Hypothesis 1 and discuss reduced
towers.

Section 10<fw—Extension property for nice towers

Section 11Redwced towers
Part |. Preliminaries

Throughout this paper, unless otherwise stated, we will rfedsaimption 0.7and . will be a cardinal satisfying
LS(K) < u < A wherea is the categoricity cardinal.

We introduce the necessary definitions and background f&8jn The reader familiar with33] may skim through
Section 2where the monster model is introduced and then proce&attion 4which includes some new results on

u-splitting.
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1. Galoistypes

In this section we discuss problems that arise when working without the amalgamation property in AECs. The first
obgacle is to identify a reasonable notion of type. Because of the category-theoretic definition of abstract elementar
classes, the first-order notion of formulas and types cammapplied. To overcome this barrier, Shelah has suggested
identifying types, not with formulas, but with the orbit of an element under the group of automorphisms fixing a
given dructure. In order to carry out this definition of type, the following binary relaibomust be an equivalence
relaion on triples(a, M, N). In order to aeid confusing this new notion of “type” with the conventional one (i.e. set
of formulas) we will follow [6] and [7] and introduce it below under the name®#él ois type.

Definition 1.1.1. For triples(a, M, N)) whered € Ny andM; < N, € K forl = 1, 2, we define a binary relation
E as follows:(a1, M1, N1)E(az, M2, Np) iff M := M1 = M3 and there existdl € K and<y-mappingsfs, f2 such
thatfi : NN — Nandfi | M =idy forl =1, 2andfi(a1) = fa(ay):

f1
Ny —— N

g

M T N2
To prove thatE is an equivalence relation (more specifically, thais transitive), we need to restrict ourselves to
amalgamation bases.

Remark 1.1.2. E is an equivalence relation ohe set of triples of the fornta, M, N) whereM =<x N,a € N
and M, N € ICZ’“ for fixed u > LS(K). To seethat E is transitive, considefa;, M, N1)E(ap, M, N») and
(a2, M, No)E(az, M, N3) where M, N1, N2, N3 € ICZ”‘. Let N1 2 and f1, fo be such thatf; : N3 — Nio;
fo: N2 > Nigandfi | M = fa | M = idy with fi(a1) = fa(az). Similarly definegp, gz and N 3 with
02(a2) = ga(az). By the Dawvnward Lowenheim—Skolem Axiom, we may assume tNab and Ny 3 have cardinality
. Consider the following diagram of this situation.

f
Np —— N1

idT I

M =g~ Mo

idl Je

N
N3 5 Na3

SinceN, was dosen to be an amalgamation base, we can amalga¥aatend N2 3 over N2 with mgppingshs
andhz and an amalganiN* giving us the following diagram:

Notice thathy(f1(a1)) = hs(gs(ag)). Thushy o f; andhz o g3 witness thatas, M, N1)E(az, M, N3).

Remark 1.1.3 (Invariance). If M is an amalgamation base afds a<x-embedding, therf (M) is an amalgamation
base.
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In AECs withthe amalgamation property, we are often limited to speak of types only over models. Here we are
further restrited to deal with types only over models which are amalgamation bases.

Definition 1.1.4. Let u > LS(K) be given.

() ForM, N € K5™with M < N anda € “7|N|, theGaloistype of ain N over M, written ga-tga/M, N), is
defined to bea, M, N)/E.
(2) ForM e Kam,

ga-$(M) := {ga-tpa/M, N) | M <x N € k&M a e N}.

(3) We sayp € ga-SM) isrealized in M’ wheneverM < M’ and there exisk € M" andN e K%" suchthat
p=(aM,N)/E.

(4 ForM” e Ki"with M <x M" andgq = ga-tpa/M’, N) € ga-§M’), we definethe restriction of g to M as
q [ M :=ga-tpa/M, N).

(5) ForM’ e £4M with M < M’, we saythatq € ga-§M’) extends p € ga-SM) iff g | M = p.

(6) p € ga-SM) is said to benon-algebraicif no a € M realizesp.

Notation 1.1.5. We will often abbreviate a Galois type, gatgyM, N) as ga-tga/M), when he role ofN is not
crucial or is clear. This occurs mostly when we are working inside of a fixed stru¢twigich wedefine inSection 2

Fact 1.1.6 (See[7]). When K = Mod(T) for T a complete first-order theory, the above definition of ga-tpa/M, N)
coincides with the classical first-order definition where ¢ and a have the same type over M iff for every first-order
formula ¢ (x, b) with parameters b from M,

N E ¢(c, b) iff N = ¢(a, b).
We will now define Galois stability in an analogous way:
Definition |.1.7. We say thaiC is Galois stablein w if for every M e 5™, lga-S(M)| = u.
Fact 1.1.8 (Fact 2.1.30of [33]). If K iscategorical in A, then for every u < A, we havethat K is Galois stable in .

By combining results from33,8] and [2] itis possible to improve this to conclude Galois stability in some cardinals
> ), butit remains open whether or not in AECs categoricity implies Galois stability in all cardinalities &ls(@.

Definition 1.1.9. Letu > LS(K), M is said to beu-saturated if for every N <x M with N € ICi’B and every Galois
type p overN, we hae thatp is realized inM.

The following fact is proved by showing the equivalence of model homogeneous models and saturated models in
classes which satisfy the amalgamation prope3ty.[

Fact 1.1.10. Suppose that /C satisfies the amalgamation property. If M1 and M2 € KC,, are p-saturated and there
exists N <x Mg, M2 with N € K, then My = My.

Since we will be working in acontext where the amalgamation prageis not assumed, we do not have the
uniqueness of saturated models at hand. In fact even theesésbf saturated models is questionable. The purpose of
this paper is to identify a suitable substitute for saturation that is unique up to isomorphism in every cardinality. The
candidate is the limit model discussed in the following section. Later we will give an alternative characterization of
limit models as thenion of a relatively full tower (se8ection §. This characterization plays the roleff-saturated
models from first-order model theory (see Chapter IV2§].

2. Limit models

In this section we define limit models and discuss their uniqueness and existence. A local substitute for the monste
model is also introduced.

We beggin with universal extensions which are central in the definition of limit models. A universal extension
captures some properties of saturated models withoutriredeexplicitly to types. The notion of universality over
countable models was first analyzed by Shelah in Theorem 1.4(3Ppf [
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Definition 1.2.1. (1) Letx be a cardinak LS(K). We saythatN is «-universal over M iff for every M’ € K, with
M <x M’ there exists ax-embeddingy : M’ — N suchthatg | M = idy:

M/

| N

(2) We sayN is universal over M or N is a universal extension of M iff N is ||M||-universal oveiM.

Notation 1.2.2. In diagrams, we will indicate thatl is universal overM, by writing M =4 N .

Remark 1.2.3. Notice that the definition oN universal over M requires all extensions dfl of cardinality||[M| to
be embeddable intbl. First-order variants of this definition in the literature often invol\d || < ||N|. We will be
considering the case whe¢jM || = || N]||.

Remark 1.2.4. Suppose thaT is a first-order omplete theory that is stable in some regulaifhen evey modelM
of T of cardinalityu has an elementary extensibhof cardinalityu which isuniveral over M. To seehis, define an
elementary-increasing and continuous chain of models of cardinalityu, (Nj | i < u) suchthatN;; realizes all
types ovelN;. LetN = in Ni. By a back-and-forth construction, one can show tNais universal oveiM.

The existence of universal extensions in AECs follows from categoricitygind GCH or categoricity and uses the
presentation of the model of cardinalityas a reduct of an EM-model.

Fact 1.2.5 (Theorem1.3.1from[33]). Let x be such that LS(K) < w < 4. Then every element of £5™ has a
universal extensionin 5™

Another existence result that does not use GCH or categoricity can be proved under the assumption of Galo
stability and the amalgamation propert@Z] or see B] for a proof).

Notice that the following observation asserts that it is unreasonable to prove a stronger existence statement the
Fact 1.2.5 without having proved the amalgamation property.

Proposition 1.2.6. If M € C,, has a universal extension, then M is an amalgamation base.
We can now define the principal concept of this paper:

Definition 1.2.7. For M’, M € K, ando alimit ordinal with o < p*, we saythatM’ is a (i, o)-limit over M iff
there exists & -increasing and continuous sequence of modise IC,, | i < o) suchthat

(1) M = Mo,

(2) M = Ui<a M;

(3)fori < o, M; is an amalgamation base and
(4) Mj11 is universl over M; .

Remark 1.2.8. (1) Natice that inDefinition 1.2.7, fori < o andi alimit ordinal, M; is a(u, i)-limit model.

(2) Notice that Condition 3) implies Condition (4) ofDefinition .2.7. In our constructions, since the question
of whether a particular model is an amalgamation base becomes crucial, we choose to list this as a separa
condition.

Definition 1.2.9. We say thaM’ is a(u, o)-limit iff there is someM € K suchthatM’ is a(u, o)-limit over M.

While limit models were used islff] and 28], their use extends to other cemts. Thee is eudence that
the uniqueness of limit models provides a basis for the development of a notion of non-forking and a stability
theory for abstract elementary classes. Limit models are usef] to develop the notion ohon-splitting h tame,
Galois-stable AECs. The uniqueness of limit models implies the existence of superlim4]irAfiditionally,
in [32] the uniqueness of limit models appears as an axiorgood frames and the limit models are closely
related to brimmed models. In all of these applications, limit models provide a substitute for Galois-saturated
models.
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By repeated applications dfact 1.2.5 the exisence of(u, w)-limit models can be proved:

Fact 1.2.10 (Theorem1.3.1from[33]). Let u bea cardinal suchthat .« < 1. For every M e K9, thereisa (i, w)-
limit over M.

In order to extend this argument further to yield the existenag.of )-limits for arbitrary limit ordinalss < ™,
we need to be able to verify that limit models are in fact amalgamation bases. We will examineStion 3

While the existence of limit models can be derivednirthe categoricity and weak diamond assumptions, the
uniqueness of limit models is more difficult. Here wecall two easy uniqueness facts which state that limit
models of the same length are isomorphic. They are proved using the natural back-and-forth construction of ar
isomorphism.

Fact 1.2.11 (Fact 1.3.6 from[33]). Let u > LS(K) ando < u*. If My and My are (i, o)-limitsover M, then there
exists an isomorphismg : My — Mz suchthat g | M = idy. Moreover if My isa (u, o)-limit over Mp; Nz isa
(u, o)-limit over Np and g : Mg = Np, then there exists a <-mapping, §, extending g such that § : M1 = Nj.

M1 9. N1

'R

Fact 1.2.12 (Fact 1.3.7 from[33]). Let u beacardinal and s alimit ordinal withe < u* < A. If Misa (u, o)-limit
model, then M isa (u, cf (o))-limit model.

A more dallenging uniqueness question is to prove that two limit models of different lengthst (o2) are
isomorphic:

Conjecturel.2.13. Supposethat K is categorical in some A > Hanf(K) and p isa cardinal with LS(K) < u < A.
Let o1 and o belimit ordinals < u*. Suppose M1 and M are (i, o1)- and (i, o2)-limits over M, respectively. Then
M1 isisomorphic to M, over M.

The main result of this papeTheorem1.9.1 is a sdution to this conjecture undeAssumption 0.7and
Hypothesis 1.

We will need one more notion of limit model, which will later serve as a substitute for a monster model. This is a
natural extension of the limit models already defined:

Definition 1.2.14. Let u be a cardinak A, we saythatl\7| is a(u, ut)-limit over M iff there exists a<c-increasing
and continuous chain of model8t; e lCim |i < ut) suchthatMg = M, Ui<u+ Mi = M, and fori < wt, Mis1
is universl over M;.

Remark 1.2.15. While it is known that in our contextu, 8)-limit models are amalgamation bases wifer: 1™,

it is open whetter or not(u, u*)-limits are amalgamation bases. To avoahfusion between these two concepts of
limit models, we will denoté, .. )-limit models with a” above the model's name (i.B1). Later we will avoid this
confusion by fixing au, 1 ™)-limit model and denoting it by, since it will substitute the usual notion of a monster
model.

The existence ofu, 1 1)-limit models follows from the fact that., 6)-limit models are amalgamation bases when
0 < ut, seeCorollary 1.3.14 Theuniqueness ofu, «™)-limit models Corollay 1.2.20) can be shown using an easy
back-and-forth construction as in the proofrafct 1.2.11

The following theorem indicates that, ™ )-limits provide some level of homogeneity. First we recall an exercise
regarding amigamation.

Remark 1.2.16. Suppose thaMg, M; and M3 can be amalgamated, then by renaming elements, we can choose the
amalgam to be & -extension oM.
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Theorem 1.2.17. If M isa (i, u*)-limit, then for every N < M with N € K3™, we have that M is universal over
N. Moreover, M isa (i1, u*)-limit over N.

Proof. Suppose thaM is a(u, u™)-limit model andN <x M is such thatN € lCim. Let N’ be an extension of

of cardinality. Let (M | i < u™) witness thaM is a(u, u+)-limit model. SinceN has cardinality u, thereexigs
i < uT,suchhatN <x M;. SinceN is an amalgamation base, we can amalgariwhteandN’ over N with amalgam
M’ € K,,. By Remarkl.2.16 we mayassume thaM; <x M’.

N — = M

of

NTM|

SinceM;41 is universl over M, there isg : M’ — M1 suchthatg | M; = idy;. Theng o h give us the desired

mapping fromN’ into M over N.

N/ h>M/

I

NTMi:id}M”l O

Remark 1.2.18. If N is not an amalgamation base, then there are no universal models over
It is immediate that realizes many types:

Corollary 1.2.19. For every M € K5 with M < €, we havethat ¢ is saturated over M.

Corollary 1.2.20. Suppose My and My are (i, ut)-limits over My, My € IC;‘}’“, respectively. If there exists an
isomorphismh : M1 = Mo, then h can be extended to an isomorphismg : M; = My.

Since (., u™)-limit models are unique and are universal over all amalgamation bases of cardinatligy are
in some senskhomogeneous. We will see thatVf is a (x, «™)-limit model and ga-tpa/M, M) = ga-tpb/M, M),
then there is maubmorphismf of M fixing M suchthat f (a) = b (Corollary 1.2.25). In some ways(u, 1 *)-limit
models behave like monster models in first-order logic if we restrict ourselves to amalgamation bases and models ¢
cardinalityu. This justifies the following notation.

Notation 1.2.21. We fix a cardinaly with LS(K) < u < A and a(u, u™)-limit model and denote it by. For
M <x € we abbreviate

{f | fisanautomghism of& with f | M =idy}
by Auty ().

While it is customary to work entirely inside of a fixed monster modiéh first-order logic, we will sometimes
need to consider structures outside?cfince we daot have the full power of model homogeneity in this context.

We now recall a result from33] which will be used inour proof of Corollary 1.2.25 Although Shelah and
Villaveces work without the amalgamation property a assumption, using weak diamond they prove a weak
amalgamation property, which they refer todessity of amalgamation bases.

Fact 1.2.22 (Theorem1.2.4from[33]). Every M € K., hasa proper K-extension of the same cardinality which is
an amalgamation base.

We can now improvéd-act 1.2.5dightly. This improvement is used throughout this paper.
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Lemmal.2.23. For every u with LS(K) < u < 4,ifM € K&, N e Kanda “">|N| aresuchthat M <x N,
then there exists M2 € K™ such that M2 is universal over M and M | Ja < M2,

Proof. By Axiom 4 of AEC, we can findM’ <y N of cardinality containingM | a. ApplyingFact 1.2.22 there
exists an amalgamation base of cardinalitysayM”, extendingM’. By Fact I.2.5we can find a universal extension
of M” of cardinalityu, sayM?2.

Notice thatM? is also universal ovell. Why? Suppos®* is an extension ol of cardinality... SinceM is an
amalgamation base we can amalganiteand M* over M. WLOG we nay assume that the amalgalM;*, is an
extengon of M” of cardinalityx and a<j-mappingf* : M* — M** with f* | M = idy.

f e
M* —= M**

TN

M—= M =g M?
Now, sinceM? is universal overM”, there ejsts a<j-mappingg suchthatg : M** — Mawithg | M” = idy.
Notice thatg o f* gives us the desired mapping df* into M2. O

Notice that_emma 1.2.23s a step closer to proving th&?™ satisfiesAxiom 4 of the definition of AEC as it gives
a weak downward bivenheim—Skolem property. It is an open question whether okABtis an AEC!
An alternative version dfemma |.2.23gives us

Lemmal.2.24. Given amalgamation bases of cardinality u, M1 and Ma. If M1, M2 <) €, then there exists an
amalgamation base M’ < € of cardinality  that is universal over both M1 and M.

Proof. Let (M{ | i < ™) witness that¢ is a (u, u™)-limit model. Then there exists < u* suchthat
M1, M2 <x M/. Notice that by toice of the sequenc(EMJf | j < wn*), we have that/, , is universal over

M/. Thus, using the assumption thd andM; are amalgamation base!’s!igrl is univeraloverM; andM,. O
The following is a corollary offheorem 1.2.1and justifies our choice of notation far, u*)-limit models.

Corollary 1.2.25. If ga-tpa/M, €) = ga-tpb/M, ), then there is an automorphism f of € fixing M such that
f(a)=h.

Proof. Suppose that ga-tp/M, €) = ga-tpb/M, €). By Theorem 1.2.17 ¢ is a (u, u™)-limit over M. Let
(Mi e K&M | i < u*) witness this. There exists an< p* suchthata, b € M;. Denote M; by both Ma and
Mp. By definition of types, there is a modBl of cardinalityx and<j-mappinggy, h suchthatg(a) = h(b) and the
following diagram commutes:

My — > N

o I

MTMb

Notice that¢ is universl over Mp. So there is a<x-mapping,f’ : N — € such that the following diagram
commutes:

My —> = N

N

M=~ Mo =5~ ¢

1 The main dificulty is Axiom 5.
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Considerf’og. Natice that it is a partial atomorphism with domaiiv,. By Corollary .2.20applied tof’og(Mg)
andMj,, the mgping f’ o g can be extended to an automorphisntp€all such an extensioh. Then, f | M = idy
andf(a) = f’og(a) = f'(h(b)) = b, asrguired. O

3. Limit models are amalgamation bases

While Fact 1.2.22asserts the existence of amalgamation basds, useful to idatify what other features are
sufficient for a model to be an amalgamation base. Makkai and Shelah were able to prove that all existentially close
models are amalgamation bases ffqr,, theories withk above a strongly compact cardinal (Corollary 1.6 1]).
Kolmanand Shelah identified a concept calfédenesswhich implied amalgamation in categoridal ., theories with
x above a measurable cardinal. (Note: Thmation of niceness is notlated to the notion of nice towers appearing in
Section 5. They then showed that every model of cardinadity. was ni@ (see 14]). These resultselied heavily on
set theretic assumptions.

In a more general context, Shelah and Villaveces state that every limit model is an amalgamation base (Fact 1.3.!

of [33)]), using <>M+(S(’§(+M)). For compléeness, werovide a proof that evergu, 6)-limit model withd < p* is an

amalgamation base under a weaker version of dian(ldvr;td(sff?m)). This is he content offTheorem 1.3.13
Let us first recall the set theoretic and model theoretic machinery necessary for the proof.

Definition 1.3.1. Let6 be a regular ordinak u*. We denote

g = < put | cfa) = 6).
The ®-principle defined next is known &evlin and Shelah’sweak diamond [4].

Definition 1.3.2. For y acardinal andS € u* a dationary set, the weak diamond, denoteddy: (S) , is said to
hold iff for all F : #">2 — 2 thereexidsg : u* — 2 such thatdr everyf : u+ — 2 the set

{6 € S| F(f | §) = g(8)} is stationary.
We will be using a onsequence cb,,+(S), called® ,+(S) (see []).

Definition 1.3.3. For . acardinalS < p* a staionary set,®,,+(S) is said to hold if and only if for all families of
functions

{f, :ne n2 wheref, : p* — pt}

and for every clulC € ut, there exist # v € "2 and thee exists & € C N Ssuchthat
Onis=v1s,
2 f,16="11éand
() n(d) # v(3).
The relative strength of these principles is provided below. | detals.

Fact 1.3.4. For Sa stationary subset of 1™, 0,+(S) = ©,+(S) = 0,+(9).
For most egulard < ™, Fact 1.3.4and the following imply thaﬁ)u+($+) follows from GCH:

Fact 1.3.5 ([5] for u Regular and [21] for © Sngular). For every i > 83, GCH = ¢,,+(S) where S = $+ for
any regular 6 # cf(u).

Thus, from GCH aneﬁ)ﬂ+(8§(+m) we have tha@M+($+) holds for every regula® < ™.

In addition to the weak diamond, we will be using EHercht—Mostowski models. Let us recall some facts
here.

The following gives a characterization of AECs BE-classes.Fact 1.3.7 is often referred to as Shelah’s
Presentation Theorem.
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Definition 1.3.6. A classKC of structures is called BC-class if there exists a languade, a firstorder theoryT; in
the languagé.1 and a collection of types without parametdrssuch hatL ; is an epansion ofL (K) and

K=PC(Ty,I',L):={M | L:M = Ty andM omits all types from/}.

When|Ty| + |L1| + [I'] + Ro = x, we saythatK is PC, . PC-classes are sometimes referred tpragective classes
or pseudo-elementary classes.

Fact 1.3.7 (Lemma 1.8 of [24] or See[7]). If (K, <x) isan AEC, then there exists y < 2-5%) suchthat K is PC,.

The representation of AECs &C-classes allows us to construct Ehrenfeucht—Mostowski models if there are
arbitrarily large models in our class.

Definition 1.3.8. Given an AECKC, we define thédanf number of IC, abbrevided HanfK), as the miimal« suchthat
for every PC,isix)-class, K, if there edsts a modeM e K’ of cardinalityx, then here are arbitrély large models
in K.

Fact 1.3.9 (Claim0.6 of [28] or See[7]). Assume that K is an AEC that contains a model of cardinality >
:l(zstuq) 4. Then, thereisa &, proper for linear orders,2 such that for all linear orders | < J we have that

(1) EM(I, &) | L(K) <x EM(J, &) | L(K) and
) IEM(, &) | LUOI = 1] + LS(K).

Itis a theorem of C.C. Chang based on a theorem of Morley that(iant 3(22LS(}C))+ (see Section 4 of Chapter
VIl of [26]). Morley’s proof [1§] gives a better upper bound in certain situations: for a dadsat is PCy,, theHanf
number ofiC is < 3,,,.

In our context, sinc& has no maximal model&; has amodd of cardinality Han{XC). Then byFact 1.3.9 wecan
construct Ehrenfeucht—Mostowski models.

We describe an index set which appears often in papers about the categoricity conjecture. This index set appears i
several places includingl4,28] and [33].

Notation 1.3.10. Leta < A be given.
For X C «, we define

Ix :={n € “X:{n < w|n(n) # 0} is finite} }.
The following fact is proved in several papers e3f]|{

Fact 1.3.11. If M <x EM(ly, @) | L(K) isamodel of cardinality .+ with u™ < A, then there exists a < -mapping
f:M— EM(,+, ®) | L(K).

A variant of this universality property is (implicit in Lemma 3.7 a#] or see []):

Fact 1.3.12. Suppose « is a regular cardinal. If M <x EM(l,, &) | L(K) is a modd of cardinality < «
and N <x EM(;, &) | L(K) is an extension of M of cardinality ||[M|, then there exists a <-embedding
f:N— EM(, &) | L(K)suchthat f | M =idy.

We now pove thatlimit models are amalgamation bases.

Theorem 1.3.13. Under Assumption 0.7, if M is a (u, 0)-limit for some 6 with § < u* < A, then M is an
amalgamation base.

Proof. Given u, suppose tha# is the minimal infinite ordinak ™ such that there exists a modéll which is a
(i, ©)-limit and not an amalgamation base. Notice thatHagt 1.2.12 we mayassume that ¢f) = 6. We assume
that all models have aséir universe a subset pf".

2 Alsoknown as a blueprint, see Definition 2.5 of Chapter VII, Section 26ffor a formal definition.
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For this proof we will make use of the following notation. We will consider binary sequences ordered by initial
segment ad denote this ordering by. Forn € “2 we usd (n) as an abbreviation for the length gf in this case
l(n) = a.

With the intention of gentually applying®ﬂ+($+), we Will define a treeof structuresM,, € K, | n € “+>2)
such trat whenl (n) has oofindity 6, M, will be a (x, 6)-limit model andM,~, M, -1 will witness thatM,; is not an
amalgamation base. After this tree of structures is ddfivewill embed each chain of models into a universal model

of cardinality . ™. We will apply ®M+($+) to these embddings.@w(sgﬁ) will provide an amalgam foM,o and
M,~1 over M, for some sequencgwhose length has cofinality;, giving us a ontradiction.

In order to construct such a tree of models, we will need several conditions to hold throughout the inductive
construction:

(DM = My

@) forn<ve ¥ 72, M, <k M,
(3) forl (n) alimit ordinal with cf(l(n)) < 6, M, = Ua<|(n) M, o

@)fory e “2witha € §*,
(a) M, is a(u, 0)-limit model
(b) M, ). M, 1)y cannot be amalgamated ovdy,
(c) M, andM, 1, are amalgamation bases of cardinality
(5)forn e “2witha ¢ S,
(a) M,, is an amalgamation base
(b) M, 0)» M,q) are univesalover M, and
(c) M, andM,~ 1, are amalgamation bases of cardinalityit may be thatM,~ o, = M,y in this case).

This construction is possible:

n = (): By Fact.2.22wecan findM" € 5" suchthatM <, M’. DefineM;y := M’.

| () isalimit ordinal: Whencf(l () > 0, let M} := [, _y(,) My1a- M}, is not necessarily an amalgamation base,
but for thepurposes of this construction, continuity at such limits is not important. Thibiyl.2.22we can find an
extenson of M,’], sayM,, of cardinalityu suchthatM, is an amalgamation base.

Forn with cf(l (n)) < 6, we regquire continuity. DefinéM,, := UOKM) M, . We reed to verify that if () ¢ $‘+,
then M, is an amalgamation base. In fact, we will show that sudid,awill be a (u, cf(l(n)))-limit model. Let
(aj | i < cf(I(n))) be an increasing and continuous sequence of ordinals converding) teuch that cflej) < 60
for everyi < cf(l(n)). Condtion (5b) guarantees that for< cf(l(»)), M, ,, is universal over M. Additionally,
condition (3) ensures us thal,,, | i < cf(l(n))) is continuous. This sequencé models witnesses tha¥l, is
a (u, cf(l(n)))-limit model. By our minimal choice of and our assumption that in this phase of the construction
cf((n) < 6, we have that(u, cf(l(n)))-limit models are amalgamation bases. Thdg is an amalgamation
base.

n'(i) wherel(n) € $+: We first ndice thatM,, := U, -1, Myja IS @(u, 6)-limit model. Why? Sincé(n) € $+
andg is regular, we can find an increasing and continuous sequence of ordinals, < ) converging td (n) such
that for each < 6 we have that avj) < 6. Condtion (5b) of the construction guarantees that for eiaehd, M,
is universal overM, 1, . Thus(M, 1, | i < 0) witnesses thaW,, is a(u, #)-limit model.

SinceM,, is a(u, 0)-limit, we can fix an isomorphisni : M = M,,. By Remarkl.1.3, M,, is not an amalgamation
base. Thus there exidtl,-g and M,~; extensons of M, which cannot be amalgamated ovit,. WLOG, by the
Density of Amalgamation Bases, we can chod4g g, andM,~ 1, to be elements of:im.

dit+1

7' (i) wherel(n) ¢ $+: SinceM,, is an amalgamation base, we can chobkgg, andM, to be extasions of
M, suchthatM,, € K§™ andM,, is universal overM,, forl =0, 1.

This completes the construction. L@tbe a club containingex < 4™ | M, has universe:}.

For everyn € “+2, defineM,, := Ua<u+ M, .. Notice that by condition (5b) of the construction, eddh has
cardinality,.™. By categoricity inA andFact 1.3.1] we can fix a<)-mappingg, : M, — EM(l .+, @) | L(K) for

eachy € »"2. Now aply @,ﬁ(s;;*) tofindn, v e * 2 anda e Sgﬁ N C suchthat

p=nla=vla,
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- n(a) =0,v(x) =1and
. gn[Mngv rMp-

LetN := EM(l,+, @) [ L(K). Then he following diagram commutes:

9 [Mp(a)
My 1y ——

idT TgnrMpA(O)

M, T Mo~0)

Notice thatg, [ M, g andg, | M,y witness thatM, o andM,~1, can be amalgamated ovdt,. Since

e
l(p) =« €S , My andM,~, were chosen so that they cannot be amalgamatedMyefThus, we contradict
condition (4b) of the construction.O

Now that we have verified that limit models are amalgamation bases, we can use the existence of universa
extensons to constructu, )-limit models for arbitraryy < ™.

Corollary 1.3.14 (Existence of Limit Models). For every cardinal 1 and limit ordinal & withd < ™ < A, if M isan
amalgamation base of cardinality u, then there exists a («, 9)-limit over M.

Proof. By repeated applications dfact 1.2.5(existence of universal extensions) afftcorem 1.3.13 O

In addition to the fact that limit mode are amalgamation bases, we wie an even stronger amalgamation
propety of limit models. It is a result of Shelah and Villaveces. The argument provided is a simplification of the
original and was suggested by J. Baldwin.

Fact 1.3.15 (Weak Digoint Amalgamation[33]). Given » > u > LS(K) and &, 6y < wt with 6p regular. If Mg isa
(1, Bp)-limit and M1, M2 € K, are <x-extensions of Mo, then for every b € “( M1\ Mp), there exist M3, a model,
and h, a <x-embedding, such that

Dh: My — Mg;
(2)h | Mo = i dy, and
(3)h(M2) N b = ¥ (equivalently h(M2) N M1 = Mo).

Proof. Let Mp, M1 and M2 be given as in the statement of the claim. First notice that we may assumdghist;
andM, are such that there isSa< ™ with Mg = M1 N(EM(lg, @) | L(K)) andMy, My <x EM(,+, ) I L(K).
Why? Defing(N; € K, | i < u™) a<g-increasing and continuous chain of amalgamation bases such that
(1) Nop = Mg and
(2) Nj+1 is universal overN;.
Let N+ = Uiqﬁ Ni. By categoricity andFact .3.11 there eists a<x-mapping f suchthat f : N,+ —
EM(,+, ®) | L(K). Considerthe clubC = {§ < o f(N,+) N (EM(ls, @) | L(K)) = f(N;)}. Let
s eCn %Lf?@o)' Notice that f (Ns) is a (u, cf(6p))-limit model. SinceMg is also a(u, cf(6p))-limit model, there
exigsg: Mo = f (Ns). Sincef (Ns11) is universal over f (Ns), wecan extendy to g’ suchthatg’ : My — f(Nsy1)
with g/ (M1)NEM(ls, ) | L(K) = g’ (Mp). Thus we may tak&lg, M1 andMz with Mg = MiNEM(ls, @) | L(K).
Let§ be such thaMi; N (EM(ls, &) | L(K)) = Mg and lets* < u™ be such thaMy, My <x EM(ls<) | L(K).
Leth be thekC mapping fromEM (I5+) | L(K) into EM(l,+, @) | L(K) induced by

a8 +a

forall o < 6*.
We will show that ifb € M1\Mg thenb ¢ thz). Suppose for the sake of contradicti_on thmt M1\Mg and
b € h(My). Let t be a Skolem term and lét, 8 be finite sequences such thate I andg e ls+\ls, sdisfying

b=rt(@,§p).
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Sinceb e h(My), there eists a Skolem ternw and finite sequence® e s and g’ e [,+\ls« satisfying
b=o(@, .
SinceB’ and g are disjoint, we can fing?’ andy < |5 such trat the type of8”"8 is the same sithe ype of 7y

_____

same with respect to thexicographical ordering.
Recall

EM(,+, 9) [ LK) Eb=1(@ B) =0 @, p.
Thus
EM(,+, 9) | LK) ET@, 7) =0@, 7.

_____

EM(l,+, ®) | LIK) E 1@, 7) =0 @, B).

Combining the implications gives us a representatiob wfith parameters fronhs. Thusb € EM(ls, ¢) | L(K).
SinceMg = M1 N (EM (I, @) | L(K)), we getthatb € Mg which contradicts our choice df. O

Let us state an easy corollaryEdict 1.3.15that will simplify future constructions:

Corollary 1.3.16. Suppose i, Mo, M1, M2 and b are asin the statement of Fact 1.3.15 If M1 < &, then there exists
a <j-mapping h such that

QD)h: My — €,
(2)h | Mg = idm, and
(3)h(M2) N'b = Mo (equivalently h(Mp) N My = #).

Proof. By Fact 1.3.15 there ejsts a<y-mappingg and a modeMs of cardinality suchthat

-0 M2—> M3

£ g Mo = idw,

- g(M2) Nb = Mg and
- M1 < Ms.

Sincec is universl over My, we can fix a<x-mappingf suchthat f : M3 — € andf | My = idy,. Notice that
h:= go f is the desired mapping froid, into €. O

4. p-Splitting

Appearing in Rg] is u-splitting, which is a generalization of the first-order notion of splitting to AECs. Most results
concerningu-splitting areproved under the assumption of categoricity. Just recently Grossberg and VanDieren have
made progress without categoricity by consideringplitting in Galois-stable, tame AECs (sef]).

In this section we will develop nop-splitting as our dependence relation and prove the extension and uniqueness
properties for nonz-splitting types.

Before definingu-splitting we need to describe what is meant by the image of a Galois type:

Definition 1.4.1. Let M be an amalgamation base apde ga-SM). If h is a <x-mapping with domairM we
can defineh(p) as follows. Since¢ is saturated oveM (Corollary 1.2.19, we can fixa e € redizing p. By
Corollary 1.2.20 we can extend to h an automorphism of. Denote by

h(p) := ga-tpth(@)/h(M)).

The verification that this definition does not depend on our choichsofia is left to the reader.
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Definition 1.4.2. Let u be a cardinal withu < A. ForM € K3™ andp € ga-SM), we saythat p u-splitsover N iff
N <x M and there exist amalgamation badgs N, € K, and a<x-mappingh : N1 = N, suchthat

()N <x N1, N2 < M,
(2)h(p I N1) # p | N2 and
(3)h | N =idy.

Remark 1.4.3. If T is a first-orderheory stable inu andM is saturated, then for aMl < M of cardinality u, the
first-order type, tga/ M), does not split (in the first-order sense) oiff ga-tp(a/M) does notu-spit over N.

Let us state some easy facts concerningplitting.

Remark 1.4.4. Let N < M <x M’ beamalgamation bases of cardinalitysuch that ga-tga/M’) does nofu-sgit
overN.

(1) (Monotonicity) Then ga-ta/M) does notu-sgit over N.
(2) (Invariance) Ith is a<j-mapping with domairM’, h(ga-tpia/M")) does nofu-sgit over h(N).

The following appears ind8] under the assumption of the amalgamation property. The same conclusion holds in
this context.

Fact 1.4.5 (Claim3.3.10f [28]). If K is u-Galois stable and K satisfies the amalgamation property, then for every
M e K-, and every p € ga-§M), thereexistsa N < M of cardinality . such that N € 1C and p does not p-split
over N.

Shelah and Villaveces draw connections betweeegcaicity and superstability properties usipgsplitting. Let
usrecall some first-order consequences of superstability.

Fact 1.4.6. Let T be a countablefirst-order theory. Suppose T is superstable.

(DIf (M; | 1 < o) isa <-increasing and continuous chain of models and o is a limit ordinal, then for every
p € S(My), thereexistsi < o such that p does not fork over M;.

(2)Let T be a countable first-order theory. Suppose T is superstable. Let (M; | i < o) be a <-increasing and
continuous chain of models with o a limit ordinal. If p € S(M,,) is such that for everyi < o, p | M; does not
fork over Mo, then p does not fork over M.

These results are consequences @) = Ro3 and the finite character of forkin(see Chgter Il Section 3 of
[2€). Itis interesting that Shelah and Villaveces managertive analogs of these theorems without having the finite
character ofx-splitting or the compactness theorem.

Fact 1.4.7is an analog ofact 1.4.61), restated: under the assumptioncategoricity there are no long splitting
chains. The proof of this fact relies on a combinatorial blackbox principle (see Chapter2iof |

Fact 1.4.7 (Theorem2.2.1 from[33]). Under Assumption 0.7, suppose that

(D (M; |i <o) is<x-increasing and continuous,
(@forali <o, Mj € K57,

(3)for ali < o, Mj4+1 isuniversal over M; and
(4) p € ga-SMy).

Thenthereexistsani < o such that p does not w-split over M;.

Implicit in Shelah and Villaveces’ proof dfact |.4.7is a statement similar tBact .4.62). The proof ofFact .4.7
is by contradiction. IfFact 1.4.7fails to be true, then there is a counter-example that has one of three properties (cases
(a), (b), and (c) of their proof). Each casesemrately refuted. Case (a) yields:

Fact 1.4.8. Under Assumption 0.7, suppose that

(D) (M; |i <o) is<g-increasing and continuous,

3K(T) is the locality cardinal of non-forking; seedffinition 3.1 in Chapter Ill Section 3 oRf)].
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()foralli <o, M € K",

(3)for all i < o, Mj41 isuniversal over M,

(4) p € ga-SM,) and

(5) p I M; doesnot p-split over Mg for all i < o.

Then p does not w-split over M.

The proofs ofFact I.4.7andFact |.4.8use the full power of the categoricity assumption. In particular, Shelah and
Villaveces use the fact that every model can be embedded into a reduct of an Ehrenfeucht—Mostowski model. It i
open as to whether or not the categoricity assumption can be removed:

Question 1.4.9. Can statements similar teacts 1.4.7andl.4.8 be proved under the assumption of any of the working
definitions of Galois superstability?

We now derive the extension and uniaess propertieof non-splittirg types Theorems 1.4.1@ndl.4.12. These
results do not rely on any assumptions on the class. We will use these properties to find extensions of towers, but the
are also useful for developing a stability theory for tame abstract elementary clas8es in [

Theorem 1.4.10 (Extension of Non-splitting Types). Supposethat M € K, is universal over N and ga-tpa/M, )
does not p-split over N, when € isa (u, ut)-limit containinga | M.
Let M" e K8 be an extension of M with M’ <xc €. Then there exists a <xc-mapping g € Auty (€) such that

ga-tpa/g(M’)) doesnot u-split over N. Equivalently, =1 € Auty (€) issuchthat ga-tpg~*(a)/M’) doesnot y-split
over N.

Proof. Since M is universal over N, there eists a <i-mappingh’ : M’ — M with " | N = idn. By
Corollary 1.2.20 we can extendh’ to an automorphisrh of €. Notice that by monotonicity, ga-tp/h(M’)) does
not u-sgit over N. By invaiiance,

ga-tph~(a)/M’) does nof-spit over N. (%)
Subclaim 1.4.11. ga-tgh—1(a)/M) = ga-tga/M).

Proof. We will use the notion ofu-splitting to prove this subclaim. So let us rename the models in such a way
that our application of the definition gf-splitting will become transparent. Létl; := h—1(M) andN, := M. Let

p := ga-tpgh~1(a)/h~1(M)). Consider the mapping : N; = N,. By invaiiance,p does notu-sgit over N. Thus,

h(p | N1) = p | Na. Let uscalculate this

h(p [ Np) = ga-tph(h~*(@)/h(h(M))) = ga-ta/M).
While,

p I N2 = ga-th™(@)/M).
Thus ga-tgh—1(a)/M) = ga-tpa/M) is as reuired. O

From the subclaim, we can find-ac-mappingg € Auty (¢) suchthatg o h=1(a) = a. Notice that ly applyingg
to (x) we get

ga-tga/g(M’), €) does nofu-sgit over N. (%)
Applyingg~1 to (x%) gives us thequivalently clause:

ga-tag~(@)/M’, ¢) does nofu-split over N.
Sinceg | M = idw, we have that

ga-tpg(a)/M) = ga-tpg~(@)/M) = ga-tpa/M). O

Not only do non-splittig extensions exist, but they are unique:
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Theorem 1.4.12 (Uniqueness of Non-splitting Extensions). Let N, M, M’ ¢ Kﬁm be such that M’ is universal over
M and M isuniversal over N. If p € ga-SM) does not u-split over N, then thereisa unique p’ € ga-SM’) such
that p’ extends p and p’ does not -split over N.

Proof. By Theorem 1.4.10thereexigs p’ € ga-SM’) extending p suchthat p’ does nofu-spit over N. Suppose for
the sake of ontradiction that there existg % p’ € ga-§M’) extending p suchthatg’ does nofu-sgit over N. Let
a, b be such thap’ = ga-tga/M’) andq’ = ga-tplb/M’). SinceM is universal over N, there eists a<y-mapping
f: M — Mwith f | N=idy. Sincep’ andqg’ do notu-sgit over N we have

ga-tpa/f (M) = ga-tp(f (a)/f (M")) and (¥)a

ga-tpb/f (M) = ga-tp(f (b)/f(M")). ()b
On the othehand, since’ # ', we have that

ga-tp f (2)/f(M") # ga-ta f (b)/f (M)). ()

Combining(x)a, (*)p and(x), we get

ga-tpa/f (M) # ga-tpb/f (M")).
Since f (M’) <x M, this inequdity witnesses that

ga-tna/M) # ga-tptb/M),
contradicting our choice gb’ andq’ both extendingp. O

Remark 1.4.13. Notice that the following follows from the exisnce and uniqueness nbn-splittig extensions:
Let N,M, M’ ¢ lCim with M universal over N andM <x M’. If p € ga-SM) does notu-spit over N and is
non-algebraic, then any € ga-IM’) which extendsp and does not-sgit over N is also non-algebraic.

The following is a corollary of the existence and guéness for non-§ifting types. It allows us to extend an
increasing chain of nosgitting types. Recall thiin an AEC, a typep extending an increasing chain of types
(pi |1 < 0) does not always exist and may not even be unique when it does exisP]see [

Corollary 1.4.14. Supposethat (M; € ICﬁm | i < @) isa=<j-increasing chainof modelsand (p; € ga-SM;) | i < 0)
isan increasing chain of types such that for everyi < 6, p; does not w-split over Mg and Mj is universal over M. If
M = (J;_, M; isan amalgamation base, then there exists p € ga-SM) such that for eachi < 6 p; C p. Moreover,
p does not p-split over M.

Proof. Suppose thaM is an amalgamation base. Bjreorem |.4.10there isp € ga-SM) extending p; suchthatp
does nofu-sgit over Mg. By Theorem 1.4.12we have thaforeveryi <6, pp=p | M;. O

5. Towers

While Theorem 1.4.1@llows us to find extensions ofren-splitting Galoisytpe in any AEC Sectbns 7and10are
dedicated to the difficult taskf é nding non-spitting extersions ofa-many types simultaneously under categoricity.
The mechanics used to do this include towers.

Shelah introduced chains of towers @[ and [23] as atool to build a model of cardinalityy™ from models
of cardinality u. Towers a&e also used inJ] to handle abstract classes which satigixioms 1-4of AECs, but
for which the union axiomAxiom 5, is not assumed. A particular example of such classes is the class of Banach
spaces.

We fdlow the notation mtroduced in 83]. In [33] seveal other towers were defined. The supersccipn the
ordering <fw and the superscripts andx* in the cIass*ICZ,a save as parameters in their paper to distinguish

various definitions. In this paper, we will refer to only the towers*il(i:a ordered by<l°w.
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Definition 1.5.1.

M= (M € K, |i <a)is <k -increasing

Mi is a(u, 6;)-limit model for someg; < u™;
a € Mjz1\M; fori +1 < a;

N = (N; elyli+l<a)

Ni is a(u, oj)-limit model for somes; < u™;
foreveryi +1 < o, Ni < Mj;

M; is universal overN; and

ga-tpa /Mj, Mj+1) does nofu-sgit over N;.

YK, =1 (M, a N)

Remark 1.5.2. The sequenceM is not necessarily continuous. The sequemtenay not be<j-increasing or
continuous.

Notation I.5.3. We will use the termcontinuoustower to refer to towers of the fornitM, a, N) with M a continuous
sejuence. If(M, &, N) € +ICM «» We saythat(J; _, Mi is thetop of the tower and that(M, a, N) haslength ..
Notation 1.5.4. For 6 alimit ordinal < p*, we write */wa for the colection of all towers(M, &, N) € *ICTW
where eachM; is a(u, 6)-limit model.

Our goal is to simultaeously extend the non-splitting Gabis types,{ga-tgaj/Mi, Mi11) | i + 1 < «}. The
following ordering on towers captures this.

Definition 1.5.5. For (M, &, N) and(M’, &, N') € Tk}, ,, we say

(M, &, N) <5, (M. &, N iff

(1) fori < « e|therMi = M; or M/ is universal over M;,

(2)a=a’and

@)N = N

We say(M,a, N) <6 , (M, &, N)iff (M,a, N) <5 , (M, &, N') andM/ # M; for everyi < a.

Remark 1.5.6. Notice that in Definition 1.5.5 if (M,é,N) <¢o (M.aN), then br everyi < a,
ga-tpiai /M/, M/, ;) does nofu-spit over N;.

Notation 1.5.7. We will often be looking at extensions of an initiadgnent of a tower. We introduce the following
notation for this. SupposeM, a, N) € K, ,. Let 8 < . We wite M | g for the sequencéM; | i < B).
Similarly,a | B = (a | i +1 < g)andN | B = (N, | i +1 < B). Then(M, a, N) | g will represent the tower
(M1 g,a] B8, N ,3) € +ICM3 If (M",&,N’)is a<¢ ﬁ-extensmn ofM, a, N) | B, we rekr to it as gpartial
extension of (M, a, N).

The requwement tha#l! is universal over M; in the definition of<M allows us to conclude that the models in the
union of a<u o-increasing chain of towers are limit models. In particular, the union eﬁ@ increasing chain (of
length< ™) of towers is a tower.

Definition 1.5.8. We say thafC satisfies th&fw-extension property iff every tower if‘ilCZ’a has a<ﬁ’a-extension.

The <M L-extension property serves as a weak substitute foextension property of non-forking in first-order
model theory, but is much stronger than the extemgioperty for non-splitting. Notice that for towers with= 1,
Theorem I.4.1@&nd the existence of universal extensiofact |.2.9 give the <€ el extenson property. Actually it is
possible to derive the n-extension property for ath < » with no more than the existen of universal extensions
and the extension pro;:tg for non-spitting types.

It is open whether or not everlf satisfyingAssumption 0.7has the<z’a—extension property fotx > w. The

difficulties concern discontinuous towers. Notice thatM, a, N) is not continuous, then for some limit ordinal
i < a, we may hae thatUj -i Mj is not an amalgamation base. Suppose that we have constructed a partial extension

of (M, a, N) up toi. It may be thecase that this extension any may not be amalgamated 0\,Lejj<i M;. This
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would rule out much hope for using the partial extension as a base for a longer extension of the entifielt@yé).
With this in mind, it is natural to restrict ourselves to continuous towers. However, it is not easy to prove that every
continuous tower has a continuous extension. In fact, we can only prove this under an extra assumption, Hypothesis
(seeSection 7.

In addition to the continuous towers, we have identified two subclasséﬁiéfa, amalgarable and nice towers,
for which a<l°t’a-extension property can be proven.

Definition 1.5.9. We say thattM, a, N) € K,

is nice iff wheneveri < « is a limit ordinal,| J; _; Mj is an
amalgamation base.

o

Remark 1.5.10. Since everyM; is a (u, 6;)-limit for some limit ordinalg; < u™, by Theorem 1.3.13we have that
everyM; is also an amalgamation base.8ce only is a requirement for limit ordinalswhereM is not continuous
ati. Thus, if(M, a, N) is a continuous tower, thefM, a, N) is nice.

Notice that the definition of nice does not require that the top of the tc()@gaga Mi) be an amalgamation base.
For these towers we introduce the terminology:

Definition 1.5.11. We say thaiM, a, N) +’C;a is amalgamable iff it is nice and| J;_, Mi is an amalgamation
base.

We use the word amalgamable to refer to such towers, because amﬁgwcextensions of an amalgamable tower
(M, a, N) can be amalgamated ovej; _, M;.

Notice that the classes of amalgamable and nice towers both avoid the problematic towers described above. Namel
if (M, a, N) is discontinuous at, we require that| J; _; M; is an amalgamation base. We can show that every nice
tower has an amalgamable extensidhéorem I11.10.). In particular, every continuous tower has an amalgamable
extension. However, this amalgamable extension may not be continuous. Furthermore, if we instead restrict ourselve:
to amalgamable towers, we will runto the difficulty that the union of afm—increasing chain of amalgamable towers
need not be amalgamable (or even nice). But, with a litd from Hypothesis 1, we are able to carry through the
strategy of restricting ourselves to continuous towers. By carefully stacking the amalgamable exterSantoim7
we construct continuous extensions of continuous towers.

Notation I.5.12. Ultimately, we will be constructing &, ,-extension(M’, &, N') of a tower(M, &, N), but we

will allow the extension to live on a larger index sekl’, &, N') € +ICZVO[, for somea’ > a. We will also like to
arrange the construction so thais not identified with an initial segment af, but as somether scattered, increasing
subsequence af’. Therefore, we will prefer to consider the relative structure of these index sets in addition to their
order types. We make the following conventiontthll be justified in later constructions. Whenands are ordinals,

a x § with the lexicograhical ordering &e), is well ordered. Recall that of@ x §, <jex) = 8 - « where- is ordinal
multiplication. For easier notation in future constructions, we will idendify § with the interval of ordinal$0, § - @)

and +IC/*L,01><6 will refer to the collection of towers‘*lczya,a. Thenotation wil be more convenient when we compare

towers in Tk, s with those inTK), .5 for o’ > o ands’ > 6.

We will make use of the following proposition concernirag’a throughout the paper.

Proposition 1.5.13. If (M, &, N) isa <§ ,-extension of (M, & N), then for everyi < j < a, we have that Mj is
universal over M;.
Proof. By definition of<l°w, we have thaM/ is universal oveM;. SinceM’ is increasingM <x Mjf. So Mjf is

universl overM; as well. O
Part I . Uniqueness of limit models
We will use towers to prove the uniqueness of limit med®y producing a model which is simultaneously a

(u, 61)-limit model and a(u, 62)-limit model. The construction of such aauel is sufficient to prove the uniqueness
of limit models byFact I.2.11and involves building an increasing and continuous chain of towers.
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The idea is to build a two-dimensional array (with the cofinality of the heighi and the cofinality of the width
= 6>) of models such tat the bottom corner of the arrai) is a (u, 61)-limit model witnessed by the last column
and a(u, 62)-limit model witnessed by the last row of the array. The actual construction involves increasing the length
of the towers as we go from one row to the next.

The construction of this array is done by identifyiegch row of the array with a tower and then buildingﬁa-
increasing and continuous chain of towers (whekeill vary throughout our construction).

0:
8 e ,
So+1 So+1 So+1
- Moo <% Up<t, Mg us) = Mgy0
id
! id
8 +1 S+l npd0t+l
Moo <K Up<6: Mg 15, = My 0
id
: I \
p ettt <K U Mt
o1 0,0 B<62 V(B ud;11)
id
. M801
i Ur <o, Up<, Mg3s,,
& 8o, o, o, 9,
Mo <€ Uicus, Mgy % Uicusy, Mgaiy % Up<a, Ui<pisy, Mgl
M*

In order to witness tha¥l* is a(u, 61)-limit model, we will need for our towers to bacreasing in such a way that
the models in thé + 1st tower are universal over the models in 8itle tower. This is possible if we can prove that
every continuous tower has a continuou§’a-extension. This is the subject 8&ction 7and related material appears
in Section 10

While M* is built up by a chain of cofinality,, it may not be a(u, 62)-limit model. In order to conclude that
M* is a(u, 62)-limit model, we show inSection 6 that the top of a continuous, relatively full tower of lengthis a
(i, 62)-limit model. We will construct the relatively full tower by requiring that at every stage of our construction of
the array, we realize all the strong types over the previous tower in a systematigeeapn 8orovides the technical
machinery to carry this through. The actual constructioMdéfis carried out inSection 9

6. Relatively full towers

We begin this sction by recalling the definition atrong types from [33].

Definition 11.6.1 (Definition 3.2.1 of [33]). ForM a (i, 8)-limit model,
(1) Let
N <x M;
N is a(u, 0) — limit model,
St(M) := { (p, N) M isuniversloverN;
p € ga-SM) is non-algebraic
and p does notuw — split overN.
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(2) For types(pi, N)) € 6t(M) (I = 1, 2), we say(p1, N1) ~ (p2, Ny) iff for every M’ € Isz extendingM there is
ag € ga-§M’) extending bothp; and p, suchthatg does nofu-sgit over N1 andq does nofu-sgit over Ny.

Notation 11.6.2. SupposeM <y M’ are amalgamation bases of cardinglity=or (p, N) € &t(M’), if M isuniversal
overN, we define theestriction(p, N) | M € Gt(M’) to be(p | M, N).
We write (p, N) [ M only whenp does nofu-sgit over N andM is universal overN.

Notice that~ is an equivalence relation a@it(M). To seethat~ is a transitive relation o®t(M), suppose that
(p1, N1) ~ (p2, N2) and(pz2, N2) ~ (p3, N3). LetM’ € ICZ”‘ be an extension d¥l and fixg;; € ga-SM’) extending
both p; and p; andq;j does nofu-split over bothN; andNj (for (i, j) = (1, 2), (2, 3)). Sincep; has a unique non-
splitting extension tdM’ (Theorem 1.4.1p, we know thatgi2 = Q3. Thengiz witnesses thatpi, N1) ~ (ps, N3)
since it is & extensbn of bothp; and p3 and does not-split over bothN; and N3.

The following lemma is used to provide a bound on the number of strong types.

Lemmall.6.3. Given M € K9™, and (p, N), (p’, N) € 6t(M). Let M" € K5™ be a universal extension of M. To
show that (p, N) ~ (p’, N’) it sufficesto find g € ga-SM’) such that q extends both p and p’ and such that g does
not w-split over N and N’.

Proof. Supposeq € ga-SM’) extends bothp and p’ and does nog-sgit over N and N’. Let M* ¢ Kﬁm be an

extenson of M. By universality of M/, thereexigs f : M* — M’ suchthat f | M = idy. Considerf ~1(q). It
extendsp and p’ and does nat-sgit over N andN’ by invariance. Thugp, N) ~ (p/, N). O

The following appears as a Fact 3.2.2(3)33][ We provide a proof here for completeness.
Fact 11.6.4. For M € K§™, | 6t(M)/ ~ | < p.

Proof of Fact 1.6.4. Suppose for the sake of contradiction that
|GUM)/ ~ | > p.

Let {(pi, Ni) € 6t(M) | i < u't} be pairwise non-equivalent. By Galois stabiliffatt 1.1.§ and the jgeon-
hole principle, there exisp € ga-§M) and| C u™ of cardinality ™ suchthati € | implies p = p. Set
p :=ga-tpa/M) with a € €.

Fix M" € K& auniversal extension dfl inside. We will show that there are- 1" types overM’. This will
provide us vith a contradiction sinc& is Galois stable in (Fact 1.1.9.

For eachi € |, by the extension propsy of non-splitting Theorem 1.4.1]) there existsfi € Auty (€) suchthat

- ga-tp fj (@)/M’) does nofu-sgit over N; and
- ga-tp i (a)/M’) extends ga-tgga/M).

Claim 11.6.5. Fori # j € |, we havethat the types, ga-tq( fj (a)/M’) and ga-tp( fj (a)/M’), are not equal.

Proof of Claim I1.6.5. Otherwise ga-tpfj(a)/M’) does notu-sgit over N; and does noj-spit over Nj. By
Lemma I1.6.3 this imdies that(p, Nj) ~ (p, N;) contradicting our choice of norn-equivalent strong types.O

This completes the proof dga-ty fi(a)/M’) | i € |} is a set ofu™ distinct types oveM’, contradictingu-Galois
stability. O

We can now consider towers which are saturated with respect to strong types@®fidvh). These towers are
called relatively full.

Definition 11.6.6. Leta, § andé be limit ordinals< u™. Suppose(Mﬁ,i | (B,1) € @ x §) is such that each?l,g,i isa
seguence of limit models(,MfB’yi |y < 6), with M/’g’fl universal overr\/lgyi forall (8,i) € a x 6.

Atower (M, a, N) € ’LICZ,W(S is said to bdull relativeto (M? | y < @) iffforall (8,i) € a x &

Q) I\7I,3,i witnesses thaWg  is a(u, 0)-limit model and
(2)for all (p,N*) € 6t(Mg;) with N* = M}’,f’i for some y < 6, there is aj <
§ suchthat(ga-tp@g+1,j/Mg+1.j)» Ng+1,j) [ Mgi ~ (p, N*).
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M8,0 <K =<K Mg,i <K ...
id id
Mgo <K <K Mg,i <K
id id
M();-é-l <K <K ng‘ikl <K .-
id id
M0,0=Uy<9 M())/,O <K<K Mg, =Uy<9 M/)S/,i <K .-

Notation 11.6.7. We say thatM, a, N) < Kﬁ’axs is relatively full iff there exists(Mg; | (8,i) € « x §) asin
Definition 11.6.6suchthat(M, &, N) is full relative to(Mg,i | (8,i) € & x §).

Remark 11.6.8. A strengthening ofDefinition 11.6.6appears in33] under the name full towers (see Definition 3.2.3
of their paper). Conder the statement:

VM e 5™ andv(p, N), (p', N') € 6t(M), (p, N) ~ (p’, N) iff p=p". ()

Notice hat forM e K™, if (p, N) ~ (p’, N') € 6t(M), then recessarilyp = p'. To see tis, takeM’ € £
some extension df1 andq € ga-SM’) suchthatq extends bothp and p’ and does nojf.-sgit over N andN’. Then
gl M=pandg| M = p'. Sopandp’ must be equal.

However we donot know that(x) holdsin our context. Shelah has implicitly shown, with much work, that it
does hold in categorical AECs whichtisfy the amalgamation propert2§]. It is a consequence of transitivity of
non-splitting.

Property (x) implies that relatively full towers are full. We uselatively full towers since the construction of full
towers by an increasing chain of towers in this context has been seen to be problematic.

The following proposition is immediate frothe definition of relative fullness.

Proposition 11.6.9. Let « and 8 be limit ordinals < ut. If (M, &, N) € +ICZ,(1_><8 is full relative to (Mg | (B,i) €
a x §8), then for every limit ordinal 8 < «, we have that the restriction (M, &, N) | B x & is full relative to

(Mg ir | (B',i") € B x 8).

The following theorem is proved ir8f] for full towers(Theorem 3.2.4 of their paper). Our strengthening provides
us with an alternative characteation of limit models as the top of a relatively full tower.

Theorem 11.6.10. Let « bean ordinal < u+ suchthat o = i - . SUpposes < ut. 1f (M, a, N) € +ICZ,01><6 isfull
relativeto (Mg | (B,1) € @ x 8) and M iscontinuous, then M := | J; _,.s Mi isa (i, cf(a))-limit model over Mo.

Proof. Let M’ <x € be a(u, «)-limit over Moo witnessed by M/ | i < «). By Weak Disjoint Amalgamation and
renaming elements, we can arrange that, M/ N |UJ; _,.s Mi = Mo,0 and that for each < « we can identify the
universe ofM with 1 (1 +i). Notice that sincer = . - , we have thai € Mi’Jrl for everyi < «. We will construct
an isomorphism fronM into M’.

Now we define by induction on < « a increasing and continuous sequence@f-mappingsh; | i < «) such
that
(D hi : Mi;j — M/, forsomej < §
(2)ho = idwm,, and

()i e rg(hita).
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Fori = 0O takeho = idwm,,. Fori a limit ordinal let hi = Ui i hi. Since M is continuous, we know
that{J; . My is an amalgamation base. Thus the induction hypothesis gives uijtligat <,-mapping from

j<é6

Mi.o = Uy Miv,j into M/ allowing us to satisfy condition (1) of the construction.

<6
Suppoée thah; has been defined. Lgt< 6 be such thah; : M; j — Mi’+1. There are twaases: eithear € rg(h;)
ori ¢ rg(h;). Firstsuppose that € rg(h;). SinceM{Jr2 is universal ovelMi’H, it is also universal overh; (M; j). This
allows us to extendl; tohj11 : Mijy1.0 — Mi’+2.
Now consider the case wherg rg(h;). We illustrate the construction for this case:

i =
i
€
, id , id , id ,
Mo=->M =M =M,
N N
: - v : ’
ho | id hi hisr s flofaolr M Ti() = fa(W(@i1j))
4 4
S ol
Mo.o<x Mij.o <K Mi,j <xkMit1.0=K Mi+1,j/
€
T faoh
Qp1,j

Since(Mi’fj | ¥ < 6) witness thatM; j is a (u, 0)-limit model, by Fact 1.4.7 thereexids y < 6 suchthat
ga-tp(i /M j) does noju-spit over Mi{’j . By our choice ofM’ disjoint from M outside ofMg, we know thati ¢ Mi.j.
Thus ga-tigi /M;, j) is non-algebraic and by relative fullness@fl, a, N), thereexigs j’ < § suchthat

(ga-tpi /M j), Mi’fj) ~ (9a-tp(@+1,j//Mit1,j), Nigaj) [ Mij.

In particular we have that

ga-tp@a41,jr/Mij) = ga-tpi /M ). (%)
We can extend; to an automorphism’ of €. An application ofh’ to (x) gives us
ga-tph'(ai4+1,j)/hi (Mi,j)) = ga-tpi /hi (M; j)). ()

By (xx), there existM* < sz a KC-substructure o€ containingM; j and<x-mappingsfy : h'(Mij 1 j41) —
M* and f; : Mi’+2 — M* suchthat fa(h'(a41,j)) = fi(i) and fa | hi(Mjj) = fi | hi(Mj;j) = idhi(Mi_j). Since
M/, is universl over M/ ,, it is also universal overh; (M; j). So we nay assume thal* = M/_,. Since€ is a
(0, u)-limit model, we can extend, and f; to automorphisms of, say fa and f;. Let hive: Miggjry1 — Mi’+2
be defined ag;~* o fa o . Notice thathi1(a11,j) = i. This @mpletes the construction.

Leth := (Ji_, hi. Clearlyh : M — M’. To seethath is an isomorphism, notice that condition (3) of the
construction forceh to be surjective. O

Remark 11.6.11. Theorem 11.6.10can be improved by replacing the assumption of continuityMf &, N) with
niceness. The same proof works with a minor adjustna¢ thelimit stage. We lift the requirement thét; | i < «)
is continuous and use the fact thdf_ , is universal over M/ to carry out the construction at limits.

7. Existence of continuous <j, ,-extensions

Our proof of the uniqueness of limit models will involveaﬁya-increasing chain of continuous towers such that
the index sets of the towers grow throughout the chain. The purpose of this section $actioh 8is to develop the
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machinery that will allow us to construct such a chain of continuous towers while refining the index sets along the
way. While we will only use the fact that every continuous tower has a continuous extension, we prove the strongel
statement to fuel the induction dheorem 11.7.1

The claim that every continuous tower has a continuousreston still alludes a full solution. Hypothesis 1 is
suficient to derive the extension property. It is an open problem if this hypothesis can be removed.

Hypothesis 1: Every continuous tower of lengtinside? has an amalgamablez’a-extension inside.

Theorem 11.7.1 (Existence of Continuous Extensions). Let (M, &, _N) be a nice tower of length « in €. Under
Hypothesis 1, there exists a continuous, amalgamable tower (M*, &, N) inside ¢ such that (M,a, N) <¢
(M*, &, N).

Furthermore, if (M’, &, N) € *K;, , isacontinuouspartial extensionof (M, a, N), thenthere exist a < c-mapping
f and a continuous tower (M*, @, N) extending (M, &, N) sothat f(M/) <x M for all i < B.

w,o

Mo <k M <k UipMi =k M_ﬁ <K Uica M

My <k M/ <k Uig M/ id id

id”. \Lf id* jf lf Cid
“ N ¥ v v

Mg <k M <K Ui</3 M <k M; <Kk Ujee M*

The proof of Theorem 11.7.1is by induction one. Notice tha for @ < w, there is little to do since all towers
of length< w are vacuously continuous. df is the successor of a successor, then the induction hypothesis and the
extension property for non-splitting types (Theorem 1.4.1pproduce a continuous extension. We take care of the
case tha# is alimit ordinal by taking direct limits of partial continuous extensions. The difficult case is whethe
suwccessor of a limit ordinal. This case employs Hypothesis 1. We will build an increasing chain of continuous towers
throwing in a particular element at each stage so that in the end we will have added emaughy|, predetermined)
elements to have a universal extension quer; M;. The following proposition allows us to add in the new elements
in this stage of the inductive proof dfheorem I1.7.(wheno = § + 1 ands is a limit ordinal).

Proposition 11.7.2. Suppose that Theorem11.7.1 holds for all amalgamable towers of length § for some limit ordinal
§ < u'.Let (M, 4, N) be an amalgamable tower of length ¢ inside €. For every b € &, there exists a continuous,
amalgamabletower (M*, a, N) € +IC* inside ¢ suchthat b € (J; _; M;* and (M, &, N) <Z’6 (M*, a, N).

Furthermore, if (M’, &, N) € *K}, , isa continuous partial extension of (M. &, N)), we can choose (M*, &, N)
such that there exists a <-mapping f W|th f(M)) < Mj* for all i < B.

Proof. We begin by defining by induction og < § a <M-|ncreasmg and continuous sequence of towers,
(M, a,N)¢ e T, 5 | ¢ < &) suchthat

(1)(M, & N) <5 5 (M, &, N)°,

(2)(M, a, N)¢ |s contmuous and

(3) if we are givenM’, &, N) e YK, , a continuous partial extension M, &, N), then here is a<x-mapping f
with f(M/) <, MO foralli < g.

This produces &-by-(§ + 1)-array of models which we will diagonalize.

Why is this onstruction possible? SinceM, a, N) is amalgamable, by thaypothesis of the proposition,
(M. a, N) | 6 has a continuous extensioh®, & N) € *iC, ;. Furthermore fiwe are givenM’, &, N) € Tk, 4 as
above, then by conditio(2) of Theorem I1.7.1we may findf suchthat f (M/) <x Mi0 foralli < B. At successor
stages we can find continuous extensions by the hypoth&tie @roposition and the fact that continuous towers are
nice. Whery is alimit ordinal, we take unions. The unions will be continuous, since the union of an increasing chain
of continuous towers is continuous.
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Sincel J; _; Mi is an amalgamation base, we can find an isgohiz copy of this chain of towers inside WLOG,
for¢ <8, M <k €.

Consider the diagonal sequen@dg | ¢ < 8). Notice that his is a<j-increasing sequence of amalgamation
basa. Fors < §, we haveM{Jrl is universal overM§ Why?From the definition of¢, M§+1 is universal overME.
SlnceMgJrl <K Mgill we have thaii {+1 is aIsoumversaI oveng (seeProposition I.5. 1)3

By construction, eact?¢ is continuous. Thus the sequen@ﬂ{ | ¢ < §) is continuous. Ther{Mg | ¢ < §)

witnesses that J, _; ME is a(u, 8)-limit model. LetMP be alimit model inside¢ that is univesal over{J, s ME
and containg.

BecauseU{d Mg is a limit model, we can applifact 1.4.7to ga-tp(b/ U;<a Mg, Mg) Let& < § be such that

ga—tp(b/U Mé, Mb> does nofu-spit over Mg. (%)
r<$ '

Notice that((M! |i < &),a, N) | £isa<® ¢ .-extensionoiM, &, N) | £.

We will find a <€ a—extensmn of(M, a, N) by defining a<x-increasing chain of modeldN” | i < o) and an
increasing chain of<,< mappings(h; | i < «) with the intention that the pre-image df* under an extension of

Ui = i will form a sequenceM* suchthat (M, &, N) <WS (M*,a,N),b e M*+1 and M|* = MI foralli < &.
We choose by induction on < § a <x-increasing and continuous chain of limit modél" € IC,, | i < 6) and an
increasing and continuous sequence@f-mappingsh; | i < §) satisfying

(1) Nj_; is a limit model and is universal ové¢*

2)h; : M|' — N*

@)hi (M) <k M{*1

(4) ga tathi +1(a /N) does nofu-split over hi (N;)

(5)MP <x Ns+1 and_

(6)fori <&, N = M with hj =idy;.

We depict the construction below. The inverse image of the sequend& sfwill form the required continuous
<l§,5—extension ofM, a, N).

¢ b
€
0 & E+1 §4+2 ¢ 8
Mg <c M =< My =<c Mio=<c  Ugs M <M
holid  hi hey1
% * * * *
No Ty N T Neta id Ntz id Ur<s N
€ € €

hi(@a) hey1(@)  hepa(ags)
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The requirements determine the definitionNyf for i < &. We proceed with the rest of the construction by
inductiononi. If i is a limit ordinal> &, let N = {J; _; Nj andh; = J; ; h;.

Suppose that we have definéd and N* satisfying the conditins of the construction. We now describe how to
defineN, ;. First, we extendy to hi € Aut(¢). We can assume thét (a;) € Miiilz. This is possible sinceMiiil2 is
universal overh;j (M) by construction.

Since ga-tpaj/Mii) does notu-sgit over N;, by invariance w have that ga-t; (a;)/ h (Mii)) does notu-slit
overh; (N;). We now adjust the proof of the existenpeoperty for non-slitting extersions.

CIaimI_I.7.3. We can find g € Aut(¢) such that ga-tpg(h (@))/N*) does not p-split over hi(N;j) and
ghi (M) < M2,
Proof of Claim I1.7.3. First we find a<x-mappingf suchthat f : N* — hi(Mii) suchthat f | hij (Nj) = idn i)
which is pessible sinceh; (Mi') is universal over h; (N;). Notice that ga-tpf ~1(h; (@))/N) does notu-spit over
hi (N;) and

ga-te f ~1(hi (@))/hi (M) = ga-tthi (ai)/hi (M})) )

by a non-sfitting argument a in the proof ofTheorem 1.4.12 _
Let N* be a limit model of cardinalityx containing f ~%(hj(a)) with f~1(h;(M'T1)) <x NT. Now using

- ) e /
the equality of typeg+) and the fact thaMi'jfl2 is universal overh; (M) with hi(a) € Mi'jff, we can find a
<x-mapping f+ : Nt — Miijff suchthat f+ | hi(M/) = idp, i, and fH(f1(hi(a))) = hi(a). Now set
g:=ftof-1: ﬁ(Miiill) — Miiilz. O

Fix such ag as in the claim and sé .1 := goh; | Miiill. LetN*, ; be a<x extenson of N, MP andhiH(Miiill)
of cardinality inside€. ChooseN/’, ; to additionally be a limitmodel and universal ovex;*.
This completes the construction.

We now argue that the construction of these sequences is enough tedfpgraxtension(M*, &, N), of (M, & N)
suchthatb e M;‘ for somez < 6.

Let hs := ;s hi. We will be defining fori < §, M;* to bepre-image ofN;* under some extension of. The
following claim allows us to choose the pre-image so M?tcontainsb for somez < 6.

Claim 11.7.4. Thereexistsh € Aut(¢) extending |_; _s hi such that h(b) = b.

Proof of Claim 11.7.4. Let hs := | J; _4 hi. Consider the increasing and continuous sequéhgeM)) | i < §). By

invarianceha(Miijll) is universl overh,;(Mii) and eacrhg(Mii) is a limit model.

_Furthermore, from our choice of, we know that ga-t(b/Mi‘s) does notu-sgit over M§. Sincehi(Mii) <K
Mi'+l <K Uj <5 Mf, monotonicity of non-splitting allers us to conclude that

ga-tab/hs(M!)) does nofu-sgit over Mg.

This allows us to applffact 1.4.8 to ga-tp(b/ [; _s ha(Mii )) yielding

ga—tp(b/U ha(Mii)> does notu-spit over Mg. (%)
<8

Notice thatl J; _s Mii is a limit model witnessed byij | | < &). So wecan applyCorollary I.2.20and extend
Ui =5 hi to an automorphisrn* of €. We will first show that

ga-tp(b /h* <|L<Ja M;) , c) = ga-tp(h*(b) /h* <|L<Ja M{) , c) : (o * %)
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By invariarce and our choice df in (%),

ga-tp(h*(b) /h* (U Mf) , 6) does noju-spit over Mg.
i<é
We will use non-splitting to derive(x x x). To make the application of non-kging more transparent, let
NI := Ui_s M/, N2 := h* (J;_s M!) and p := ga-tpb/N?). By (xx), we have thatp | N2 = h*(p | N1).
In other words,

ga-tp(b/h* (.L<J,s M{) ,¢> = ga-tp(h*(b) /h* (ILJS M{) ,¢> ,

as desired.
From (x x ) and Corollary 1.2.25 we can find an atomorphismf of ¢ suchthat f(h*(b)) = band f |
h* (Uis M) = idh*(Ui M) Notice thath := f o h* satisfies the conditions of the claimO

Now that we havemaubmorphismh fixing b and| J; _; M, we can define for each < §, M;* := h*l(Ni*).

Claim11.7.5. (M*,a, N) isa <f, s-extension of (M, a, N) suchthat b € Mg, -

Proof of Claim 11.7.5. By constructionb e Mg c Ng‘+1. Sinceh(b) = b, this impliesb € M§+1. To verify that we
have asft’a-extension we need to show fok §:

i. M is universal over M;

i. g € Mi*+1\Mi fori +1 < and
iii. ga-tp(aj /M.*) does nofu-sgit over Nj whenever, i +1 < 6.
ltem i follows from the fact thaM! is universal over Mj andM! <, M*. Itemiii follows from invariance and our
construction of theN;*’s. Finally, recalling that a non-splittinextension of a non-algebratype is also non-algebraic
(Remarkl.4.13 we see tht Item iii impliesa; ¢ M. By our choice ofhj1(a) € MiT2 <, N* ., we have that

. i+1 i+1’
g € Mi*+1' Thus ltem iiis satisfied aswell. O O

Before beginning the proof ofheorem 11.7.1recall that we will be building a directed system of partial extensions
to take care of the induction step whenis alimit ordinal. Let us establish a few facts about directed systems here.
Using the axioms oAEC and Shelah’s Presentatid heorem, one can show thatxiom 5 of the definition of AEC
has an Hernative formulation (see€?f] or Chaper 13 of [7]):

Definition 11.7.6. A pattially ordered setl, <) is directed iff for everya, b € I, thereexidsc € | suchthata < c
andb < c.

Fact 11.7.7 (PM. Cohn 1965). Let (I, <) beadirected set. If (Mt |t € 1) and {ht, |t <r € |} aresuch that
Dfortel, My e £

2)fort <r €1, hir : Mi > M, isa <x-embedding and

(3) forty<th<tzel, htl»t3 = htz,t3 o htl»tz and ht,t = ith,

then, whenever s = limq¢) t, thereexist Ms € K and <jc-mappings {ht s | t € |} such that

h[,s : Mt i Ms, MS = U h[,s(Mt) and
t<s
forty <tp <s,hy s =ht,sohyt, andhss = idy;.

Definition 11.7.8. (1) (Mt [t € 1), {hts |t <se I}) fromFact|l.7.7is called adirected system.
(2) We say thatMs together with(hts | t < s) satisfying theconclusion ofFact11.7.7 is a direct limit of
(M|t <s), {hy |t <r <s}.

Later we will generalize these systems by producing directed systems of towers instead of models.
Now we useProposition 11.7.2o0 proveTheorem 11.7.1
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Proof of Theorem I1.7.1. We prove that every amalgamable tower has a continuous extension by induction on
a = 0: By Theorem |.3.1&ndCorollary 1.3.14 we can find a(u, w)-limit over Mo. Fix sucha model and call itM}).
a =48+ 1and s isalimit ordinal: The strategy is to start out with a continuous extensio\Wfa, N) | § (which

we call(M**,a | 8, N | 8).) If we are lucky, the top ofM**,a | §, N | §) will be universal over M. Sincethis
cannot be guaranteed, we will repeatedly add new elements into extensidhsos | §, N | §) until the top of one
of these extensions is universal owj.

By the induction hypothesis, we can fiit**,a | 6, N | §) € 7K, ; suchthat

- (M**. 818, N[8)is a<, ;-extension oiM, a, N) | § and
-andif(M’,a| 8, N | B)isa @ntinuous<¢, 4-extension of(M, a, N), then we can choosel** such tlat there
exigs a<x-mappingf with f (M) < M foralli < 8.

Notice that sincéM**,a | §, N | 8) is continuous, we can apply the induction hypothésisany timesto find an
<fb8-increasing chain of continuous towers of lengthn addition to being continuous, the top of this chain will be

an amalgamable extension @¥l, &, N) | . Why? The top of thigower will be a(iu, §)-limit model witnessed by
the dagonal. Thus WLOG we may assume tlikt**, a | 8, N | 8) is amalgamable and continuous.

We construct a continuou-sft’a-extension ofM, a, N) by the induction hypothesis and repeated applications of
Proposition 11.7.2

Let My be a limit model and universal ovéd; inside . EnumerateM; as{b; | ¢ < Su}. We will add these
elements into extensions gf1**,a | §, N | §) by defining by inductionog < §u a <fb8-increasing and continuous

chain of towergM, a | §, N | §)¢ € +ICL’5 suchthat

(1)(I\ZI, ars, l\:l 1 8)¢ is a<, ;-extension of M**,a |8, N |8
(2)(M,a |8, N |é&°¢ iscontinuous and

@B)b; € U _s M <k €.

The following diagram depicts the construction:

¢
id
MO <K MI <K U|<5 MI :M/=U§<8ﬂb{
id id id '
Ma‘* <ic Mi** <K Ui<s Mi**
id id id
Mg <K Mio <k Ui<s Mio > by
id id id id
c+1 +1 +1
Mg <K Mf <K Uj<s Mf > b,
id id id )
A
Mg“ <K Mi‘S” << Uiz Mi(;”

The construction is possible by the induction hypothesisRuogosition 11.7.2
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¢ = 0: SincelJ;_s M is an amalgamation base, we can applpposition I1.7.2and find a<fb5—extension
(M a4, N |8)in ¢ suchthatbg € [ Jj_; MP.

¢ + 1: Suppose thatM,a | 8, N | §)¢ has been defined. It is a continuous tower of lengythf Ui =5 Mf is
an amalgamation base, by the induction hypothesis we can &pplyosition 11.7.2to find a<z’8-extension of
(M, a8, N |87, say(M, a3, N |8+ insidee suchthatb, e |;_; MS ™.

Suppose on the other hand, thgt_; Mf is not an amalgamation base. This may occur whea limit ordinal of
a dfferent cofinality than the cofinality af. By Hypothesis 1, there is an amalgamable extensid@iviofa, N)¢ inside
¢. Apply Proposition 11.7.2o the amalgamable extension &nd The proposition will produce aﬁ’s—extension of
(M, a8, N |8, say(M, a8, N |8t insidee suchthatb, e |J;_; M.
¢ alimit ordinal: If ¢ is a limit ordinal we can setM, & [ 8, N [ 8)¢ := J._.(M, & [ 8, N | 8)%. Itis acontinuous
tower since all théM, a | 8, N | 8)¢’s are continuous. This completes the construction.

Now consider the towefM*, a, N) +ICL’5+1 defined byM* := M for alli < § andM; := [J,_; M*".
Since M} contains M}, it is universl over Ms. Thus (M*,a, N) is a <6 s41-€xtension of(M, a, N). Since
(M®* a8, N | 8)iscontinuous, we have thahM*, &, N) is also continuous. Notice thaé*, a, N) is amalgamable
as well. By construction for everly < §, My is a limit model. For the case= §, we seethat My is a (u, §)-limit
model witnessed by the diagorwli'“ i < &),
a=35+1 and § is a successor ordinal: By the induction hypothesis we can find a continuous, amalgamable
extengon (M**,a | §, N | §) of (M,a, N) | § and if we are givenM’,a | B8, N | B) as in part(2) of the
staement of the theorem, we may assume that there<ig-anappingf * suchthatf*(M{) <k M foralli < B.

Since M;*, and M; are both/C-substructures o€, we can apply the Downwarddwenheim Axiom for AECs
to find My* (a first approximation taViy') a modd of cardinality 1 extending both M{*, and Ms. WLOG by
Theorem |.2.17andLemma |.2.24ve may assume thafl;* is a limit model of cardinalityx and M§™* is universal
over bothM{*; andM;. By Theorem I.4.10we can find a<-mappingh : My* — € suchthath [ Ms = idw, and
ga-tpas/h(M;*)) does nog-spit over N;. SetM* := h(M**) foralli < . Notice that by invarianceM*, a, N) | 8
is a <°’8—extension of(M, a, N). To conclude thattM*, a, N) is the required<ft,a—extension of(M, a, N) with
f = ho f*if appropriate, it remains to check that

Subclaim I1.7.9. a5 ¢ My.

Proof of Subclaim 11.7.9. Suppose thatas € M. Since Ms is universal over Ns, there eists a <x-mapping,
g: My — M;s suchthatg | N5 = idn;. Since ga-tpas/M;) does nofu-spit over N5, we have that

ga-tpas/g(My)) = ga-tpg(as)/g(M;)). (%)

Notice that becausg(as) € g(My), () implies thata; = g(as). Thusas € g(My) <x Ms. This contradicts the
dfinition of towers:as ¢ Ms.

aisalimit ordinal > w: We will construct adirected system of partial extensiong®f, a, N), (M, a, N)¢ | ¢ < )
and(fs ; | £ < ¢ < «) satisfying the following conditions:
1) (M, a,N) ¢ <5, (M,a N
(2) (M, a, N)¢ is continuous
(3)(M, 3, N)¢ liesine
@) fee M ME - M fori <& <¢
(5)forallé < ¢, Mé is universal over f¢ <Ui<§ Mf) and
(6) fec | Mg =idy, forallé <¢ <a.
The construction is possible by the induction hypothesisRuagosition I1.7.2We provde the detis here.
¢ = 0: SetM? equal to the empty sequence afich equal to the empty mapping.
¢ =& + 1: Suppose thatM, a, N)¢ and( f,, |y <y’ < &) have been defined accordingly. Then by the induction
hypothesis applied t¢M,a, N) | ¢ and the partial extensiofM, &, N)*, we can find a<x-mapping f and a
continuous extension @M, a, N) | ¢. By applying the induction hypothesis again to this continuous extension, we

a’
a’
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can find(M, a, N)¢ e +’C;*m inside¢ such that for alli < &, f(Mf) <K Mf, f | Mj =idy, andM? is universal
over f (Ui<s Mf) Notice that by settingf, e¢y1 = fo f, g andf, , =id
stage of he construction.

¢ alimit ordinal: By the induction hypothesis we have constructed a directed sygtﬁg} Mi” | v < ¢) with

(fpe | v < & < ¢). By Factll.7.7we can find a direct limit to this systenM;* € K and <,-mappings
<f;‘§ | y < ¢). First ndice that

Uss ME we have completed the successor
e<¢ Mg

Subclaim 11.7.10. (f;‘fg I' M, | y <¢)isincreasing.
Proof. Lety < & < ¢ be given. By construction
foe I My =idwm,.
An application off;’g yields
firofye I My, =171 M,.
Since f;‘*{ and fs*fg come from a direct limit of the system which includes the mapgding, we have
% IMy =f70f 1M,y
Combining the equalities yields
% 1My, =7 1M,

This completes the proof &ubclaimll.7.10. O

By the subclaim, we have thdt := (J,_, ;% [ M, is a<x-mapping from{J, _, M, ontolJ, _, f)%(M,).

Since¢ is a(u, u*)-limit model and sianJy<§ M, is an amalgamation base @4, a, N) is nice) we can assume
that f is a partial autmorphism of¢ and extend it td= € Aut(¢) by Corollary 1.2.20

Now consider the direct limit defined Uylg = F*l(Mg*) with (f;{ =F 1o fs*fg | &€ < ¢)and fgj{ = idM;.
Let Mf = fg,;(Mf) foralli < &. This is well-defined sincefe . is part of the direct limit of a directed system.
Notice thatf, [ Mg = F~1o 5 | Mg =idy, foré <¢.

Subclaim I1.7.11. (M, &, N) | ¢ <S¢ (M, a, N)%.

Proof of Subclaim 11.7.11. We need to verify that for alt < ¢,
()M < M{,q,

(2as € M§+1\M§ and

3) ga-tr(ag/Mg) does nofu-sgit over Ng.

To see thaiM? is increasing, by the induction hypothesis,

feera (U Mf) <k M

i<&
Applying fs 1 . to both sides of this equation gives us for every £,

1
Mjg <K fer <U Mig) = feq1s (fg,§+1 (U Mf)) <K f5+1»§(M§+ ) = Mé.

i<€ i<&
By the induction hypothesis for af < ¢, a ¢ M§+2 and ga-tpag/Mgﬂ) does notu-sgit over Ng. Since

feyo [ Mgp1 = idw,,, invariane gives usfei2 ¢ (ag) = a ¢ f5+2’g(M§+2) = Mé and ga-tpa;/Mg) does not
u-spitover Ne. O ' ' '
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Notice that(M, &, N)¢ is continuous since it is formed from the direct limit of a continuous system. To see that
(M, a, N)¢ is amalgamable, notice that condition (5) of the construction guarantee{sjyl@tMé is a(u, ¢)-limit

witnessed by f¢ <Ui<s Mf) | & < ¢). This ompletes the construction.

Why is the construction sufficient to produ¢®!’, a, N) as required? We have constructed a directed system
(Ui<y Mi” |y <& <a)with (f, ¢ | y <& < «). By FactIl.7.7andSubclaimll.7.10 we can find a direct limit
to this systemM; and <,c-mappings(f, o | ¥ < @) suchthat f, , | Mi = idy, foralli < a. If (M,a, N) is
amalgamable, theM} can be chosen to lie i#. Define for all < «, MZ‘ = f;+1’a(M§+1). Notice that as in
Subclaimil.7.11, (M, & N) <, (M*, &, N). And, as in the limit stage of the construction, we see (M, &, N)
is continuous and amalgamable.

The second part of the statement of the theorem is obtained by modifying our construction by(séttindN)? =
(M’, a, N) and proceeding with thaonstruction fromg + 1. O

8. Refined orderingson towers

In this section we further develop the machinery of towers which will be used to construct a relatively full tower in
Section 9
Definition 11.8.1. For ordinalsy, o/, 8,8’ < ut with @ < o’ ands < §'. We saythat(M’, &, N') € TK* isa

oo’ x§
. VRN * ;
<C-extension of M, a, N) € +K:M,ax8 iff

- for everyg < o and every < g, M/; i Isuniversal over Mg
- foreveryg <o andi +1<$6,agi = a}g’i andNg = N}g’i.

The following theorem is used to construct relatively full towers by adding realizations of strong types between

Mg.i andMg.1 ¢ in an <C-extension of the toweiM, &, N) e +IC:W(;.

Theorem 11.8.2. Under Hypothesis 1, given « an ordinal < ut and a nice tower, (M, a, N) < *ICZ’QXW, we
N)

such that for a fixed

can find an amalgamable, continuous extension (M, &, N') € *K}, ;1. (@1 Of (M. &,
enumeration, {(p, N)f |l < u}, of Ui<;ux St(M, i) for each ¢ < «, we have that

(p. N)f ~ (ga-tp(@ +1,1+1/M 1 41)s Nec1i+1) | dom(pf). (%)

Proof. We begin by constructingM’, &, N), acontinuous, amalgamabief, . ,,-extension of M, &, N), such hat

forc+1 < «, Mé+1,o isa(w, w)-limit overUi<W Mé’i . The onstruction of M’, &, N) is done by defining a directed
system of amalgamable, continuous partial extensiorid/fa, N) usingTheorem I1.7.1Specifically, Theorem 11.7.1
allows us to define by induction on a directed systenf(M,a, N)¢ | 1 < ¢ <a)and(fs; |1 <& < ¢ < a)
satisfying the following conditions:

Q) (M, & N) | € x pa) <5, e (M, 8, N

(2) (M, &, N)¢ is continuous and amalgamable

(3)(M, a, N)¢ liesin¢ for ¢ < «

1. -
(4) ngl’o is a(u, w)-limit over J; _ Mg’i

(5)forall& < ¢, M{ is universl over f; ; (ng Mf)
(6) fe.r | M5 : M5 — M fori < £ < ¢ and
(7) fec | Mg =idy, forallé <¢ <a.

The details of the direct limit construction are similar to the direct limit construction in the limit case of
Theorem I1.7.1
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The construction is sufficient: LeéM’, a, N) := (I\7I a, N)*. For each;“ +1 <o, fixasguenceM;; | i < u)

witnessing thaM, . ; 5 is a(u, w)-limitover ;. M; ;. DefineM; ., := M, foreachi < pand; +1 <a.

Moo < Mo <xUi<pa Mo,i <K Mz0

NN o

/ / / *
MO,O <K MO,I <’<Ui<;ux MO,I :MO ::::::>M ::::::>MO j+1::::::>UJ<ﬂ O] = Ml,O

For eachs + 1 < o and each < u, by theTheorem |.4.10we can findq < ga—SMgCJrl et extending pf such

thatq does notu-sgit over NI SmceMHl paH 41 is univeral overM’ there isa € M/, 41 redizing

C+1, pa+ C+1, pa+
g. Setag 1, o+ = aandNej1 paql = NI . This gves us a definition ofM’, a, N) € +ICM,WM(MD. To extend
this tower to a tower with index seé + 1) x u(a + 1), we use tle fact that(M’, a, N) is amalgamable to fii*
a(u, u(a + 1))-limit model overUKW r<a M/ ;. Let (M’ |i < u(x + 1)) witness this. WLOG we may assume
that M/, it1 IS a(u, o)-limit over M’ for eachl < ula T 1). For eachi < pu(x + 1), fix ay; € Ma|+1\M

By Fact I.4.7and our choice oM(;i as a limit model, there is aN < M/, i suchthat M(;’i is universal overN
and ga-tpaa,i/M(;’i) does notu-sgit over N. SetN,; = N. Notice that(M’,a, N) € +ICZ’(0(+1)XM(Q+1) is as
required. O

9. Uniqueness of limit models

Recall the running assumptions:

(1) K is an abstract elementary class,
(2) K has no maximal models,
(3) K is categorical in somg > LS(K),

(4) GCH andtl)m(S"f(m) holds for every cardingk < .

Under these assumptions and Hypothesis 1, we can prewmifjueness of limit models using the results from
Sectbns 6and8.

Theorem 11.9.1 (Uniqueness of Limit Models). Let 1 be a cardinal 61, 6 limit ordinals such that 61, 6, < u* < A.
Under Hypothesis 1, if M1 and M» are (u, 61) and (i, 62) limit models over M, respectively, then there exists an
isomorphism f : My = Mz suchthat f | M =idy.

Proof. LetM € sz be given. ByFact 1.2.11it is enough to show that there exist®asuch that for everyd; alimit

ordinal< p™, we have that &u, 61)-limit model overM is isomophic to a(u, 62)-limit model overM. Take#, such
thatf, = ub,. Fix 61 alimit ordinal < u*. By Fact 1.2.12 we mayassume tha#; is regular. UsingFact I.2.11again,
it is enough to construct a model* which is simultaneously gu, 61)-limit model overM and a(u, 62)-limit model
overM.

The idea is to build a (scattered) array of models such that at some point in the array, we will find a model which
is a(u, 61)-limit model witnessed by its height in the array and iga 62)-limit model witnessed by its horizontal
posdtion in the array, relative fullness and continuity. We will define a chain of lepgtiof continuous towers while
increasing the index set of the towers in order to readirong types as we proceed with the goal of producing many
relaively full rows.

Define by induction on O< o < i the <C-increasing sequence of toweteM, a, N)¢ € *ICZ,WW o < u™),
suchthat
(MM <k Mg,

(2) (M N)* is continuous and amalgamable,

(3) (M, a N)* = Uﬂ<a(l\7l, a, N)? for « alimit ordinal and

(4) In successor stages iew intervals of lengthu, put in represetatives of allGt-types fran the previous stages.
More formally, if (p, N) € Gt(M”‘-) fori < pa andg < «, thereexids j € [uw, u(a + 1)] suchthat

(p, N) ~ (ga-tp(ag+1, J/Mﬂ+1 J) Nj) I Mg,i'
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This construction is possible:
a = 1: We can choosM* = (M]" | i < u) to be an< increasing continuous sequence of limit models of cardinality
w with Mg = M andM;" ; universal over M#. For eachi < p, fix aj; € M ;\M*. Now consider ga-tpag; /M).
SinceM/* is a limit model, we can appliact 1.4.7to fix NOI ICam such that ga- tpzacl,’i/Mi*) does notu-split over
Ng; andM;* is universal 9verl\t&i. Letal := (aj; |i < ) anle (NOI i < p). o
o alimit ordinal: Take(M, a, N)¢ := U/3<a(M a, N)2. Clearly (M, a, N)¥ is continuous. To see thaM, &, N)*
is also amalgamable, we noti_ce t@g’ieaxw M i) is @ (i, o)-limit model witnessed byl J; _ 4 Mg’i | B < a).

= B + 1: Suppose thatM, a, N)? has been defined. BFact 11.6.4 for everyy < B, we can enumerate
Uk<mS Gt(Mfyk) as {(p, N)l’/ | I < wu}. By Theorem I1.8.2 we can find a continuous, amalgamable extension

M, a, NP e K 500 pea) O (M, &, N) such that for everyl < pandy < B,

(P, N) ~ (Qatp@, +1,up 11 /MITT g ) Ny 1 pen) T dom(p)).

This completes the construction.
We now want todentify all the rows of the array which are relatively full.

Claim 11.9.2. For § alimit ordinal < ™, we havethat (M, &, N)? isfull relative to (M | | (B,1) € 8§ x u8) where
Mg,i = (Mg |y <)

Proof. Let (p, N) € Gt(Mg’i) be given such thaN = M/’;’i for somey < 4§, 8 < § andi < wd. Since our
construction is increasing and continuous, there exXists § suchthat(B8,i) € &' x ud’ andy < §. Notice then
thatM‘S is universal over N. Furthermorep | Mg, does nofu-sgit over N. Thus(p, N) [ Mg, € GI(M ). By
condmon (4) of the construction, there exigts ,u(cS’ + 1), such hat

(P N) I M3 ~ (@a-toag /M5 1), Naywj) I MJ .

B+1

SlncengﬁllJ <K Mgﬂ,j and ga-t|(>a,3+1,j/Mg+1 ) does notu-split over Ng1,j, wecan replaceMﬂHJ with

§
Mg
(p. N) [ M3 ~ (@a-tp@g1.j/Mb,1 ). Ng1a.j) | M.

Let M’ be a universal extension A2 By definition of ~, thereexigs q € ga-SM’) suchthatq extendsp |

B+1j
ﬂ,i = ga-tpag4y, j /Mﬁ’i) andq does nof-spit over N andNg.1,j . By the uniqueness of nosditting extensions
(Theorem 1.4.1p, since p does notu split over N, we have thay | Mg’ p. Also, sihce ga-tjiag1, J/M/BJrlJ

does nofu-sgit over Ngy1,j, Theorem 1.4.13jives usq | M§+1,,- = ga-tr(a,gH,J/MﬂH,j ). By definition of ~ and
Lemma 11.6.3 g also witnesses that

(ga-tp@g1,j/Mj 1 ). Npsa ) | Mg ~ (p, N).
Since(p, N) was hosen arbitrarily, we have verified thdd, &, N)® satisfies the definition of relative fullnessd

Take(s; < u™ | ¢ <61)tobean increasing and continuous sequence of limit ordingls We will consider the
restrictions (in the sense bdlotation 11.9.3 of (M, &, N)% to 6, x s

Notation 11.9.3. For¢ andé ordinals< p* and a sequencll indexed by a superset 6fx 8, we will abbreviate
(Mgi | B <6 andi <us)byM [#x1,

Define

M=) U M= | m”

I
$<61i€bxud; i E@zx#éol

We will now verify that M* is a(u, 61)-limit over M and a(u, 62)-limit over M.
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Notice that(Uieezst{ Mf‘ | ¢ < 01) withesses thdl™* is a(u, 1) limit. SinceM < Mgoo, M*isa(u, 61)-limit
overM.

By Claim11.9.2 and the fact that the restriction of a relatively full tower is relatively f@ltqposition 11.6.9, we
have that

(M, a, N)¥1 (%21 s full relative to (M1 | (B,1) € 62 x uds,),

whereM> = (M} | v < 8,). Furthermorewe seethat(M, &, N)de1 [92%1% js continuous. Sincés = w - G, we
can appﬁlTheorem 11.6.1Q0 conclude thatM* is a(u, 62)-limit model overM. 0O

Remark 11.9.4. The above proof implicitly shows the decomposition of a relatively full tower into a resolutiéh of
many towers foeverylimit ' < u*.

Part I11. Conclusion

We provide a partial proof of Hypothesis 1. We also discuss reduced towers, which appear3g twed may be
useful as a tool to prove the amalgamation property for categorical AECs with no maximal models. We will continue
to makeAssumption 0.7

10. <j,,,-Extension property for nice towers

In [33], Shelah and Villaveces claim that every tower’LithZ’a has a propekfw extengon. This proof does not

converge Here we prove a weaker extension property. Namely, we show thabieedower in +IC* o has a proper
u o-extensionCorollary I11.10.6). This is a proof of an approximation to the statement of Hypothe5|s 1 which states
that every continuous tower has an amalgamable extension iéiside

Theorem I11.10.1. Let u be a cardinal and «, y ordinalssuchthat y < o < put < 4. 1f (M,a,N) € +1wa

isniceand (M”, & N) | y is an amalgamable partial extension of (M, &, N), then there exists an amalgamable
(M*,a,N) e *K, , anda <x-mapping f such that

Q)(M,a N) <§, (M*,a,N)
(2) f(M") = M* for ali <y and
) f M = idMi foralli < y.

Furthermoreif | J; _, Mi <x ¢ andb € =*€issuchthatbn|J;_, Mi = #, thenwecanfind (M*, a, N) asabove
with b U, M* = 0.

Remark 111.10.2. If (M, &, N) is amalganable and_J; _, Mi <x €, then wecan find an extensioM’, &, N) such

Theorem I11.10.1is stronger than thekC L-extension property since it allows us to avgiemany elementgb).
This is possible due to Weak Disjoint Amalgamatlﬁact 1.3.15

Proof of Theorem 111.10.1. Let an amalgamableM., a, N) € T}, , be given.
As in the proofs ofTheorems 11.7.1and|1.8.2, we will define by induction om < « a direct system of models
(M/ |1 < a) and<x-mappings{fj; | j <i < a) suchthat fori < a:

1) ((fj, i(M’) |j<i),ali+14, NJi+1isa<C I+1-extension0(l\7|,é, N) (i +1),
)M i 1 <), (fji|]j<i) formsadirected system
(3) M/ is universal over M;,

(4) M/ +1 is universal over fj i 1(M/),
(5) f],| M] —|dMJ
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Notice hat theM/’s will not necessarily form an extension of the towet, a, N). Rather, for each < «, we find
some image otMJf | j < i) which will extend the initial segment of lengthof (M, &, N) (see condition (1) of the
construction).

The construction is possible:

i = 0: SinceMp is an amalgamation base, we can fiMg e K7}, (a first approximation of the desired,)) such
that My is universal over Mo. By Theorem |.4.10we mayassume that ga-tpo/ M) does notu-spit over No and
Mg <k €. Sinceap ¢ Mo and ga-tpag/ Mo) does nofu-sgit over No, we know thatag ¢ M(. But, we night have
that for somd > 0,a € Mg orbn Mg # @. We use Wak Disjoint Amalgamation to avoifly | 0 < | < o}
andb. By the Davnward Léwenheim—Skolem Axiom for AECsAkiom 4) we can chooséM? e K, suchthat Mg,
My < M2 < €.

By Corollary 1.3.16(apgied to M1, My, M2 and(a | 0 < | < &) U b), wecan find a<x-mappingh suchthat

.h: M2 ¢
~h[M1=idMl
~hiMOHNn{a |0<| <a}Ub) = 0.

Define M, := h(My). Notice thatag ¢ M becausey ¢ M andh(ag) = ap. ClearlyMy N (fay | 0 < | <
a} Ub) = ¢, sinceM{ <x M2 andh(M?) N{a | 0 <1 < a} = @. We reed only verify that ga-t@o/M() does
not u-spit over No. By invariance, ga-tpag/M()) does nof-sgit over No implies that ga-tgh(ag) / h(Mg)) does not
u-spit over No. But recallh(ap) = ap andh(Mg) = M. Thus ga-tigag/ M) does notu-sgit over No.

Setfpo:= idM(’)-

Below is a diagram fathe swccessor stage of the construction.

ap aj
€ €
Mo <K M1 <K <K Mj <K Mj+l<IC~-~
fo1
id id
g f1j S| Jid
k foj ™. L] [ENEEN L1 i
foj+1 B
" A id_ id
fj.i+1 fj.i+1 fj.i+1
R Ry v v

id id id
fO’j+1(Mj+1) |:> fl’j_;,_]_(Mi) :I:> f],]+1(Mj) I:> MJ{+]_

i = j 4+ 1: Suppose that we have completed the construction fdt all j. SinceMJf and Mj, 1 are both/C-
substructures of, we can apply the Downward-dwenheim Axiom for AECs to find/ljf’jrl (a first approximation to
Mf+1) amodd of cardinalityu extending bothMJf andMj;1. WLOG byTheorem |.2.1andLemma |.2.24ve may

assume thaMJf/jrl is a limit model of cardinalityx andMJf/jrl is universal overMj ;1 andMJf . By Theorem 1.4.10we
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can find a<x-mappingf : Mjf”+1
overNj;1. SetMf,; := f(M{, ;).

— Csuchthat f | Mj41 = idw,,, and ga-tga;j1/f (MJf”H)) does notu-split

Subclaim 111.103. aj41 ¢ M/,

Proof of Subclaim 111.10.3. Suppose thagj 1 € Mjf’+1. Since Mj 41 is universal over Nj 1, there eists a<j-
mappingg : MY, ; — Mj1 suchthatg | Nj41 =idn,,,. Since ga—t[}ajH/MJf/H) does nofu-spit over Nj1, we

j+1
have that
ga-tp@j+1/9(Mj’; 1) = ga-tng(@j+1)/9(Mj’;1)).

Notice that becausg(aj;+1) € g(MJf’H), we have thatj 1 = g(@j4+1). Thusaj1 € g(MJVH) < Mjq1. This
contradicts the definition of toweraj 11 ¢ Mj11. O

MJVJrl may serve us well if it does not contain amyfor j + 1 <| < « or any part ob, but this is notguaranteed.
So we need to make an adjustment. Mt bea modd of cardinality, suchthatMj 2, MJ”Jrl <x M? < €. Notice

that< is universal over Mj, ». Thus we can applZorollary 1.3.16t0 Mj,2, M, M2and(a | j+2<1 <a)Ub.
This yields a<x-mappingh suchthat

.h: M2 > ¢
hiM)N{a | j+2<! <a}Ub) =0.

Set Mf+1 = h(MJ”H). Notice that by invariance, ga-¢pj+1/MJ”+1) does notu-sgit over Nj;1 implies

that ga-tph(ajH)/h(Mj’H)) does notu-spit over h(Nj+1). Recalling thath | Mji2 = idwm,, we have that
ga-tpa, +1/MJV+1) does noj-spit over Nj 1. We reed to verify thaij 1 ¢ Mjf+1. This holds becauss ;1 ¢ MJVH
andh(aj+1) = aj41.

Setfjt1j+1 =idwm;,, andfjji1:=ho f | Mjf. To guarantee that we have a directed systemkfer j, define
fij+1 = fjj+1o fj.

i isalimit ordinal: Suppose that(MJf | j <i),{fj | k< j <i)) have been defined. Since it is a directed
system, wecan take direct limits.

Subclaim 111.10.4. We can choose a direct limit (M/*, (fj’fi [j<i)) of((MJf | <i), (fkj k<] <i)) suchthat

(DM < €
(2) £} I Mj =idy; for every j <i.

Proof of Subclaim 111.10.4. This follows fromSubclaimil.7.10and the assuption that(M, &, N) is nice. O

By Condition (4) of the construction, notice thit* is a (u, i)-limit model witnessed b)(fj’ii(MJf) | j < i).
HenceM;" is an amalgamation base. Sin andM; both live inside ofZ, wecan findM” € K, which isuniversal
overM; and univesalover M.

By Theorem 1.4.1@ve can find a<x-mappingf : M/” — ¢ suchthat f | M; = idy, and ga-tga; /f (M;”)) does
not u-spit over N;. SetM” := f(M/”). By a similar argument tcSubclaim 111.10.3 we can see thad ¢ M;".

M/ may contain somey wheni < | < o or part ofb. We reed to make an adjustment using Weak Disjoint
Amalgamaion. Let M2 be a nodd of cardinality 4 suchthat M”, Miy1 <k M2 <i €. By Corollary 1.3.16
applied toM;j, My, M2 and(a | i < | < ) Ub we can findh : M — €& suchthath [ Mj;1 = idy,_, and
hiM) Nn{a |i <l <a}Ub) = 0.

SetM/ := h(M/). We reed to verify that, ¢ M, and ga-tjga; /M;) does notu-spit over N;. Sincea; ¢ M/
andh(a) = &, we have that ¢ h(M/) = M/. By invariance of non-splitting, ga-tgi /M,") not u-splitting over
Ni implies that ga-tgh(aj)/h(M")) does notu-sgit over h(N;). Recalling our definition oh and M/, this yields
ga-tp(a; /M/) does notu-sglit over N;.

As in the poof of Theorem 11.7.1 we seethat ({((fji(Mj) | ] < i),a | i, N | i)isa <l°“-extension of
(M,a,N) Ji.
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Setfij :=idw;,i,andforj <i, fji:=hofo fj’fi.This aompletes the construction.

The construction is enough: We have constructed a directed sy@eg; M/ i <a)with (fij |i <] <a).
By Fact I1.7.7and Subclaimll.7.10 we can find a direct limit to this systenM; and <x-mappings(fi, | i < @)
suchthat fi , | Mj = idy, foralli <« andM; avoidsb. If (M, &, N) is amalgamable, thel can be chosen to lie
in €. Define forallj < &, M} := fj+1,(M]). Notice that as irSubclaimil.7.11, (M., & N) <5, (M*, & N). And,

as in the limit stage of the construction, we see thét, a, N) is continuous and amalgamable]

Remark 111.10.5. Notice that inTheorem I11.10.1if the partial extension(M’, a, N) is continuous, then we can
chooseM” such that it is continuous below, that is br everyi < y withi alimit ordinal, M{" = |; _; Mjf’.

Corollary 111.10.6 (The <l‘i’a—Extension Property for Nice Towers). If

o AN ) - . - -
(l\fl/ a, N_) € "K, o isnice then there exists an amalgamable (M’,a,N) € K. such that (M, a, N) <fw
(M’;a, N).

o

Proof. Takey = 0in Theorem I11.10.1 O

Remark 111.10.7. Notice that Hypothesis 3 implies that every tower is amalgamable. Thus Hypothesis 3 together with
Corollary 111.10.6imply the <fw-extension property for all towers.

11. Reduced towers

Shelah and Villaveces introduce the natiaf reduced towers in order to show the density of continuous towers.
While there are difficulties with Shelah and Villaveces’ approach, we discuss reduced towers because they have
characteristics similar to stngly minimal types in first-order model thgorAdditionally, they generalize reduced
triples used in31] to developanotion of non-forking.

Definition 111.11.1. A tower (M, &, N) € +IC;a is said to beeduced providedthat far every(M’, a, N) +ICZ’Q
with (M, a, N) 52,0[ (M’, &, N) we have thafor everyi < «,
M/ N M) =M. ()i
j<a
If we take a<C-increasing chain of reduced towers, the unidgh be reduced. The following proposition appears
in [33] (Theorem 31.14 of B3]) for reduced towers. We provide the proof for completeness.

Theorem I11.11.2. If (M, a, N)¥ € *ICTW | y < B)isa <l‘i,a-increa§ng and continuous sequence of reduced
towers, then the union of this sequence of towersis a reduced tower.

Proof. Denote by(M, a, N)# theunion of the sequence of towers. Thaafs= 8%, N = N andM# = (Mi’S li <
«) whereM! = U, s M.

Suppose thatM, a, N)# is not reduced. LetM’, a, N) € TK, , witness this. Then there exists an< o and
an elemenb suchthatb e (MI/ NUj<q Mf) \Miﬂ. Thereexigs y < g suchthatb € [J; _, M]\M/. Notice that
(M’, a, N) witnesses thatM, &, N)? is not reduced. O

The following appears ind3] (Theorem 31.13).

Fact I11.11.3 (Density of Reduced Towers). There exists a reduced <l‘i,a-extensi on of every nice tower in +ICZ,Q.

Proof. Suppose for the sake of contradiction thatag,a—extension of the towefM, &, N) is reduced. This allows
. . . y = 1 k
us to cc_)nstruct agfw—mcreas_mg a_nd continuous sequence of towéks, a, N)¢ e *IC,W | ¢ < u™) suchthat
(M, a, N)**t1 witnesses thatM, &, N)¢ is not reduced. ) )
The construction: SincéM, &, N) is nice, we can applgorollary 111.10.6to find (M, a, N)® a <fw extensgon of

(M, a, N).
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Suppose thatM, &, N)¢ has been defined. Since it is<, ,-extension of M, &, N), we know it is not reduced.
Let(M,a, N)é*tl ¢ +1wa be asfba-extension 9(!\7I,_é\, N)¢, witnessing this.

For¢ alimit ordinal, let(M, &, N)? = Uyq(M, a, N)”. This mmpletes the construction.

For eachb € (J, _,+ i, M/ define

ib):=minji <o |be [ J [JM] ¢ and

c<ptj<i
¢(b) ;= min{s < put |be My ).

¢(-) can be viewed as a function fromt to .. Thus there exists aclub = {§ < u™ | Vb € [J;_, M?, ¢(b) < 8}.
Actually, all we need is foE to be non-empty.

Fix 8§ € E. By construction(M, a, N)**1 witnesses the fact thaM, a, N)? is not reduced. So we may fix< «
andb € Mt Uj -« M} suchthatb ¢ M?. Sinceb e M? T, we hae thati (b) < i. Sinces e E, weknow that

there existg < § suchthatb e Mf(b). Because < § andi(b) < i, we have thab € Mi‘S as well. This contradicts
our choice of andb witnessing the failure ofM, a, N)? to be reluced. O

A variation of the following theorem was claimed i83] for reduced towers. Unfortunately, their proof does not
converge. Under Hypothesis 3, we resolve their problems here.

Theorem 111.11.4 (Reduced Towers are Continuous). Under Hypothesis 3, if (M, a, N) € *ICZ’Q isreduced, then it
is continuous.

The keys to resolving problems @3] are the exta conditions in the main consittion andthe following lemma
which is aconsequence dftheorem I11.10.Jand the definition of reduced tower.

Lemmalll.11.5. Supposethat (M, &, N) e +ICZ’Q is reduced and nice, then for every 8 < «, (M, a, N) | B is
reduced.

Notice that without the full<fm-extension property, it is conceivable to have a discontinuous reduced tower with
non-reduced restrictions.

Proof of Theorem I11.11.4. Suppose the claim fails for andsé is the minimal limit ordinal for which it fails. More
preciselyg is the minimal element of

§ is a limit ordinal such that there exists
+ | ana <t and
N — — v *k
anice, reduced toweM, &, N) € T, ,
with Mg ;IC Ui<6 M

Let @ witness that§ € S. Hypothesis 3 implies that every tower is amalgamable. Thus we can apply
Lemma I1l.11.5to essume that = §+1. Fix(M,a, N) € TK}, ;. witnessing thaé € S. Letb € M;\ |J; _; Mi be
given. ByFact I11.11.3 Hypothesis 3 and the minimality éf every nice taver of lengths has a continuous extension.
Combining this with the fact thaiM, a, N) | § is amalgamable, we can apg?yoposition I.7.20 (M, &, N) | § and

b to find a<f, ;-extension of M, &, N) | 8,say(M’,a |8, N [8)e +ICZV5, in ¢ containingb. Let M{ <x € be a
limit modd universal over Ms containingl J; _; M/. Notice that(M’, &, N) € K

witnessing thatM, &, N) is not reduced. O

S=1{f<pu

541 IS an extension ofM, a, N)

Positive solutions to the following questions would allas to adjist the previous proof to conclude that every
nice tower has a continuous extension without any extra hypothesis.

Question 111.11.6. Is it possible to remove Hypothesis 3 in the proofTdfeorem 111.11.2 Alternatively, can one
show the density of i, reduced towers?

The next step towards Shelah’s Categoricity Conjecture is to show that the uniqueness of limit models implies the
amalgamation property in this context.
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ARTICLE INFO ABSTRACT

Arﬁf{e history: In the paper “Categoricity in abstract elementary classes with no maximal models”, we
Received 1 June 2012 address gaps in Saharon Shelah and Andrés Villaveces’ (1999) proof in [4] of the uniqueness
Received in revised form 10 July 2012 of limit models of cardinality @ in A-categorical abstract elementary classes with no

Available online 27 September 2012

Communicated by A, Wilkie maximal models, where A is some cardinal larger than . Both [4] (Shelah and Villaveces,

1999) ar+1d [5] (VanDieren, 2006) employ set theoretic assumptions, namely GCH and
D+ (sé‘f(m).
Recently, Tapani Hyttinen pointed out a problem in an early draft of [3] (Grossberg
et al, 2011) to Villaveces. This problem stems from the proof in Shelah and Villaveces’
(1999) [4] that reduced towers are continuous. Residues of this problem also infect the
proof of Proposition I1.7.2 in VanDieren (2006) [5]. We respond to the issues in Shelah
and Villaveces (1999) [4] and VanDieren (2006) [5] with alternative proofs under the
strengthened assumption that the abstract elementary class is categorical in p*.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A tower is the main construct in [4] and [5] that is used to prove the uniqueness of limit models. A tower is a sequence
of length o of amalgamation bases (specifically limit models), denoted by M = (M; € IC;; |i < a), along with a sequence of

designated elements @ = (a;;1 € Mjy1 \ M; | i < a) and a sequence of designated submodels N = (N;;1 | i < «) for which
M; <x Mit1, ga-tp(a;/M;) does not p-split over N;, and M; is universal over N; (see Definition 1.5.1 of [5]). Notice that
the sequence M is not required to be continuous. In fact, many times we will not have continuous towers. For instance,
discontinuous towers arise in the proof that an amalgamable tower (M, a, N) can be extended to a tower (M’, @, N') so that
a=a, N=N’, and the models M; are universal extensions of M; (see Theorem IIL10.1 of [5]).

There are a couple of reasons why continuous towers are utilized in the proof the uniqueness of limit models. Because
in [4] and [5] we do not have the full amalgamation property, the continuity of towers allows us to avoid models that are
not amalgamation bases when we take a union of an increasing chain of towers. Even in an environment which admits full
amalgamation, the structure of the proof of the uniqueness of limit models requires a construction of an array of models
in which the last row and last column of this array need to be continuous (see the first figure in Part II of [5]). Finding
continuous extensions of towers is intrinsic in the construction of the array of models in the proof of the uniqueness of
limit models in [3-5].

In [5] we explore two approaches to produce continuous towers. One method is to consider reduced towers and verify
that they are continuous (Theorem Ill.11.4 from [5]) and dense. The other approach is to explicitly construct continuous ex-
tensions. This was attempted in Theorem II.7.1 of [5]. In both of these approaches, a gap appears which we fix here assuming
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categoricity in u™. In Section 2 we provide a proof that reduced towers are continuous in a T -categorical abstract elemen-
tary class with no maximal models, and in Section 3 we provide an alternative proof that continuous extensions of towers
exist in u*-categorical classes. As a result, the following theorem replaces the main result of [4] and Theorem 11.9.1 of [5].

Theorem 1. Assume that IC is a w T -categorical abstract elementary class with no maximal models, for some p > LS(K). Further
assume that GCH and ¢1L+(Scfw)) hold. Let 61 and 6, be limit ordinals < 1 *. Under Hypothesis 1,% if My and M are (i, 6)- and
(., 62)-limit models over M, respectively, then there exists an isomorphism f : M1 = Mp such that f | M is the identity mapping.

For the remainder of this document, we assume that /C is an abstract elementary class with no maximal models that
is categorical in u™, for some w > LS(K). While this assumption is stronger than assuming categoricity in some A larger
than w, in the broader context of categoricity results for abstract elementary classes, it is routine to work in a class that is
categorical in a successor cardinal. Furthermore, this assumption is sufficient for the application of the uniqueness of limit
models in the upward categoricity transfer theorems in [1] and [2].

In this paper, we will also use facts from [5] that follow from GCH and ¢>M+(Scf(m) specifically, limit models are amal-

gamation bases and every amalgamation base of cardinality @ has a universal extension of the same cardinality. We refer
the reader to [5] for definitions and notation.

2. Reduced towers are continuous

One method of generating continuous extensions of towers is to restrict all towers to be reduced towers and show that
these towers are continuous. The assertion that reduced towers are continuous is made in Theorem 3.1.15 of [4].

There are two problems with the proof of Theorem 3.1.15 in [4]. The first involves inadvertently constructing models that
are not amalgamation bases. This problem is fixed in [5] by the introduction of nice towers. The other issue was not known
or addressed in [5]. It was first identified by Hyttinen when the problem was reproduced in an early draft of [3]. The diffi-
culty occurs at the induction step of the construction. This step of the construction is isolated as Proposition 11.7.2 in [5]. The
proposition states that given a tower (M, a, N) and an element b outside of the tower, one can find an extension (M’,a, N)
of (M, a, N) which contains b. There are several conditions that must be satisfied simultaneously in the construction. It is
not clear how all of these conditions can simultaneously hold under the given assumptions.

Below, we prove a variation of Theorem 3.1.15 of [4] that is sufficient to carry out the uniqueness of limit models
proof in [5]. It replaces Theorem II1.11.4 from [5]. This proof can also be adapted to fix Proposition I1.7.2 in [5] under the
assumption of categoricity in u*.

Theorem 2. Under the running assumptions of this paper, most notably the assumption that K is categorical in ut,if (M,a, N)isa
nice, reduced tower constructed of models of cardinality i, then (M, a, N) is continuous.

Proof. Suppose the theorem fails. Let (M,a, N) € IC* o be a counter-example of minimal length, «. Notice that by
Lemma II.11.5 of [5], we can conclude that o =§ —|—1 for some limit ordinal § and that the failure of continuity must
occur at 8. Let b € M; \ |J;_s M; witness the discontinuity of the tower.

By the minimality of & and the density of reduced towers (Theorem II1.11.2 of [5]) we can construct a <¢, (-increasing

s
and continuous chain of reduced, continuous towers ((M,d, N)' € IC* sl i <pty with (M,a, N)? := (Ml; N) | 8. Let
M= UKW p<s M Because M is a model of cardinality pT, our categoricity assumption tells us that it must be Galois-
saturated. Let b e M realize ga-tp(b/ Uﬂ<5 Mpg). Fix i so that be Uﬂ BM By the equality of the types of b and b
over UﬁqS Mg, we can fix a K-mapping f so that f(b) =band f | Uﬂ<5 Mg is the identity. Now consider the tower
(M’,a,N) e K, « defined by setting M, = f(MjS) for B < & and choosing Mj to be a limit model which extends Uﬁ<8 M
and is universal over M;. Notice that (M’, a, N) and b witness that (M, a, N) is not reduced. O

3. Continuous extensions exist

Proposition I.7.2 in [5] is used to prove Theorem IL.7.1 which asserts that every nice tower has a continuous extension.
Avoiding the problem in the proof of Proposition I1.7.2, we provide an alternative and simpler proof of the existence of
continuous extensions of continuous towers under the assumption of categoricity.

Theorem 3. Assuming categoricity in ;1 and given a continuous tower (M, a, N) e IC; 5» there exists a continuous tower (M',a,N) e
KC3, 5 such that (M, a, N) <65 (M, a, N).

2 Hypothesis 1 of [5] is the statement: every continuous tower has an amalgamable extension inside €. A more natural statement that implies Hy-
pothesis 1 is that the class of amalgamation bases of cardinality u is closed under unions of <x -increasing chains of length < u™. In particular the
amalgamation property implies Hypothesis 1.
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Proof. We proceed to prove by induction on § that each continuous tower of length § has a continuous extension. By the
definition of the ordering on towers, <fw, the only difficult stage of the induction is when § =« 4+ 1 and « is a limit
ordinal.

Fix (M,a,N) € K% 441 @ continuous tower. By our induction hypothesis, the subtower (M,a,N) | « has continuous

extensions of length «. Build a <;,a—increasing and continuous chain of continuous towers, ((M,a, N)! € IC;‘W i< ut), so

that (M,a, N)? := (M, a, N) | . We will show that one of the towers in this chain can be lengthened to a continuous tower
that extends (M, a, N). B o

First, extend each one of the towers of length « in this chain ((M, a, N)' € IC;"M[ |i<ut) to atower of length o 4+ 1 by
defining the last model in the extended tower to be fo = Uﬁ<a Mfs for i < . Consider the top model in this sequence
of towers, M := Ui<#+ M("x. It is a model of cardinality ©™; so by our categoricity assumption it is Galois-saturated and

universal over every model of cardinality u. Moreover, M is a (i, u)-limit model and universal over M. In particular,
there exists an i < 't such that M}, is universal over My. Fix such an i and define the tower (M’,a, N) of length o +1 by
setting M/, := M}; for B < . By our selection of i and by (M, a, N)! being selected as a partial extension of (M, a, N), the

tower (M’,a, N) is a continuous extension of (M, d, N), as required. O
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