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Abstract

The results in this paper are in a context of abstract elementary classes identified by Shelah and Villaveces in which the
amalgamation property is not assumed. The long-term goal is to solve Shelah’s Categoricity Conjecture in this context. Here we
tackle a problem of Shelah and Villaveces by proving that in their context, the uniqueness of limit models follows from categoricity
under the assumption that the subclass of amalgamation bases is closed under unions of bounded,≺K-increasing chains.
c© 2005 Elsevier B.V. All rights reserved.
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Introduction

The origins of much of pure model theory can be traced back to Ło´s’ Conjecture [15]. This conjecture was resolved
by M. Morley in his Ph.D. thesis in 1962 [17]. Morley then questioned the status of the conjecture for uncountable
theories. Building on work of W. Marsh, F. Rowbottom and J.P. Ressayre, S. Shelah proved the statement for
uncountable theories in 1970 [19]. Out of Morley and Shelah’s proofs the program ofstability theory or classification
theory evolved.

While first-order logic has far reaching applications to other fields of mathematics, there are several interesting
frameworks which cannot be captured by first-order logic. A classification theory for non-elementary classes will
open the door potentially to a multitude of applications of model theory to classical mathematics and provide insight
into first-ordermodel theory.

Shelah posed a generalization of Ło´s’ Conjecture toLω1,ω as a test question to measure progress in non-first-order
model theory. Focus on non-elementary classes began to shift in the late seventies when Shelah, influenced by B.
Jónsson’s work in universal algebra (see [12,13]), identified the notion ofabstract elementary class (AEC) to capture
many non-first-order logics [24] includingLω1,ω andLω1,ω(Q). An abstract elementary class is a class of structures of
the same similarity type endowed with a morphism satisfying natural properties such as closure under directed limits.

Definition 0.1. K is anabstract elementary class (AEC) iff K is a class of models for some vocabulary which is
denoted byL(K), and the class is equipped with a partial order,�K satisfying the following:

(1) Closure under isomorphisms.
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(a) For everyM ∈ K and everyL(K)-structureN if M ∼= N thenN ∈ K.
(b) Let N1, N2 ∈ K andM1,M2 ∈ K such that there existfl : Nl ∼= Ml (for l = 1,2) satisfying f1 ⊆ f2 then

N1 ≺K N2 implies thatM1 ≺K M2.
(2)�K refines the submodel relation.
(3) If M0,M1 �K N andM0 is a submodel ofM1, thenM0 �K M1.
(4) (Downward Löwenheim–Skolem Axiom) There is aLöwenheim–Skolem number of K, denotedLS(K) which is

the minimalκ such that for everyN ∈ K and everyA ⊂ N , thereexists M with A ⊆ M ≺K N of cardinality
κ + |A|.

(5) If 〈Mi | i < δ〉 is a≺K-increasing and chain of models inK
(a)

⋃
i<δ Mi ∈ K,

(b) for every j < δ, M j ≺K
⋃

i<δ Mi and
(c) if Mi ≺K N for everyi < δ, then

⋃
i<δ Mi ≺K N .

Definition 0.2. For M, N ∈ K a monomorphismf : M → N is called a≺K-embedding or a ≺K-mapping iff
f [M] �K N .

Notation 0.3. We write Kµ := {M ∈ K | ‖M‖ = µ}.
Remark 0.4. The Hanf number ofK will be formally defined inDefinition I.3.8. It is bounded by�

(22L S(K)
)+ .

Shelah extended his categoricity conjecture forLω1,ω-theories in the following form in [29], see also [26]:

Conjecture 0.5 (Shelah’s Categoricity Conjecture). Let K be an abstract elementary class. If K is categorical in
some λ ≥ Hanf(K), then for every µ ≥ Hanf(K), K is categorical in µ.

Definition 0.6. We sayK is categorical in λ whenever there exists exactly one model inK of cardinalityλ up to
isomorphism.

Despite the existence of over 1000 published pages of partial results towards this conjecture, it remains open. Since
the mid-eighties, model theorists have approached Shelah’s conjecture from two different directions (see [6] for a short
history). Shelah, M. Makkai and O. Kolman attacked the conjecture with set theoretic assumptions [16,14,30]. On the
other hand, Shelah also looked at the conjecture under model theoretic assumptions in [28,31,32]. The approach of
Shelah and A. Villaveces in [33] involved abalance between set theoretic and model theoretic assumptions. This paper
further investigates the context of [33] which wedelineate here:

Assumption 0.7. (1)K is an AEC with no maximal models with respect to the relation≺K,
(2)K is categorical in some fixedλ ≥ Hanf(K),
(3) GCH holds and

(4) a form of the weak diamond holds, namely�µ+(Sµ
+

cf(µ)) holds for everyµ with µ < λ (seeDefinition I.3.2).

The purpose of [33] was to begin investigating the conjecture that the amalgamation property follows from
categoricity in a large enough cardinality. All of the other attempts to proveConjecture 0.5have made use of the
assumption of the amalgamation property which is a sufficient condition to define a reasonable notion of (Galois)-
type (seeSection 1).

Definition 0.8. LetK be an abstract elementary class andµ a cardinal≥ LS(K).
(1) We say thatM ∈ Kµ is anamalgamation base if for every N1, N2 ∈ Kµ andgi : M → Ni for (i = 1,2), there

are≺K-embeddingsfi , (i = 1,2) and a modelN such that the following diagram commutes:

N1
f1 �� N

M

g1

��

g2
�� N2

f2

��

(2) An abstract elementary classK satisfies theamalgamation property iff every M ∈ K is an amalgamation base.
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(3) We writeKam for the class of amalgamation bases which are inK. We also useKam
µ to denote the class of

amalgamation bases of cardinalityµ.

Remark 0.9. (1) The definition of amalgamation base varies across the literature. Our definition of amalgamation
base is weaker than an alternative formulation which does not put any restriction on the cardinality ofN1 andN2.
Under the assumption of the amalgamation property, these definitions are known to be equivalent. However, in
this context, where the amalgamation property is not assumed, we cannot guarantee the existence of the stronger
form of amalgamation bases.

(2) We get an equivalent definition of amalgamation base, if we additionally require thatgi � M = idM for i = 1,2,
in the definition above. See [7] for details.

It is conjectured that categoricity in a large enough cardinality implies the amalgamation property. However, there
are examples of abstract elementary classes which are categorical inω successivecardinals, but fail to have the
amalgamation property in larger cardinalities [11,34]. Shelah constructs an abstract elementary class whose models
are bipartite random graphs. Models of cardinalityℵ1 in this class witness the failure of amalgamation. Intriguingly,
under the assumption of Martin’s Axiom, thisclass of bipartite graphs is categorical inℵ0 andℵ1. On theother hand,
if one assumes a version of the weak diamond, Shelah proves that categoricity inℵ0 andℵ1 implies amalgamation in
ℵ1 ([24] or see [6] for an exposition). There are other natural examples of abstract elementary classes which do not
satisfy the amalgamation property but are unstable such as the class of locally finite groups [10].

Limited progress has been made to prove that amalgamation follows from categoricity. Kolman and Shelah manage
to prove this for AECs that can be axiomatized by aLκ,ω sentence with κ a measurable cardinal [14]. They first
introduce limit models as a substitute for saturated models, and then prove the uniqueness of limit models (see
Definition I.2.7).

To better understand the relationship between the amalgamation property, categoricity and the uniqueness of limit
models, consider the questions of uniqueness and existenceof limit models in classes which satisfy the amalgamation
property, but not are not necessarily categorical:

Remark 0.10. Even under the amalgamation property, the uniqueness and existence of limit models do not come
for free. The existence requires stability (see [32] or [8]). The question of uniqueness of limit models is tied into
(super)stability as well. Even in first-order logic, the uniqueness of limit models fails for un-superstable theories
(see [8] or [28] for examples). The uniqueness of limit models has been proven in AECs under the assumption of
categoricity ([14,28], and here,Theorem II.9.1). Recently Grossberg, VanDieren and Villaveces identified sufficient
conditions (which are consequences of superstability) for the uniqueness of limit models in classes with the
amalgamation property [9].

The motivation for this paper is to elaborate on recent work of Shelah and Villaveces in which they strive to prove
under weaker assumptions than Kolman and Shelah that the amalgamation property follows from categoricity above
the Hanfnumber. The first step in proving amalgamation is to show the uniqueness of limit models.

The uniqueness of limit models underAssumption 0.7generalizes Theorem 6.5 of [28] where Shelah assumes
the full amalgamation property. The amalgamation property is used in [28] in several forms including the fact that
saturated models are model homogeneous and that all reducts of Ehrenfeucht–Mostowski models are amalgamation
bases. Shelah then uses the uniqueness of limit models to prove that the union of a chain ofµ-saturated models isµ-
saturated, provided that the chain is of length< µ+. This isone of the main steps in proving a downward categoricity
transfer theorem for classes with the amalgamation property.

In the Fall of 1999, we identified several problems withShelah and Villaveces’ proof of the uniqueness of limit
models from [33]. After two years of correspondence, Shelah and Villaveces conceded that they were not able to
resolve these problems. While these issues are undertaken in this paper, to date the proof of the uniqueness of limit
models has resisted a complete solution underAssumption 0.7. After presenting a partial solution (Theorem II.9.1)
of the uniqueness of limit models and discussing this with Shelah at a Mid-Atlantic Mathematical Logic Seminar in
the Fall of 2001, we were not able to remove the extra hypothesis. The extra hypothesis was weakened in [35]. This
paper provides a complete proof of an intermediate uniqueness result patching a gap that was found in [35] in the
Fall of 2002. The partial solution to the uniqueness of limit models described here is in the context identified in [33]
(Assumption 0.7) under the hypothesis:
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Hypothesis 1: Every continuous tower insideC has an amalgamableextension insideC (seeSections 2and5 for the
definitions).

Remark 0.11. The modelC in Hypothesis 1 is not the usual monster model. It is a weak substitute for the monster
model and is introduced inSection 2. Monster models, as we know them in first-order logic, are model homogeneous.
In the absence of the amalgamation property, modelhomogeneous models may not exist.

In the context of [33], Hypothesis 1 is a consequence of the more natural Hypothesis 2 (seeSection 10).

Hypothesis 2: Forµ < λ, theclass of amalgamation bases of cardinalityµ (denoted byKam
µ ) is closed under unions

of ≺K-increasing chains of length< µ+.

It seems reasonable to consider a weakening of Grossberg’s Intermediate Categoricity Conjecture which captures
Hypothesis 2:

Conjecture 0.12. Let K be an AEC. If there exists a λ ≥ Hanf(K) such that K is categorical in λ, then Kam
µ is closed

under unions of length < µ+ for all µ with LS(K) ≤ µ < λ.

Although Theorem 1.11 of Chapter 4 in [25] addresses a similar problem to Hypothesis 2, this statement may be
too ambitious to prove. An alternative hypothesis which also implies Hypothesis 1 is

Hypothesis 3: The union of a≺K-increasing chain of length< µ+ of limit models of cardinalityµ is a limit model.

Hypothesis 3 may be more approachable as it is a relative of the first-order consequence of superstability that the
union of a≺-increasing chain ofκ(T )-many saturated models is saturated.

Hypothesis 1 has relatives in the literature as well. Indeed, in [24] where the amalgamation property is not assumed,
Shelah identifies the link between the existence of maximal elements ofK3ℵ0

(a specialization of towers of length 1)

and 2ℵ1 non-isomorphic models inℵ1.
This paper is divided into three parts outlined below.

Part I. The first part summarizes the necessary definitions and background material. It also includes some new results
onµ-splitting.

Section 1Galois types
Section 2Limit models
Section 3Limit models are amalgamation bases
Section 4µ-splitting
Section 5Towers

Part II. Here we provide a complete proof of the uniqueness of limit models under Hypothesis 1 andAssumption 0.7.

Section 6Relatively full towers
Section 7Continuous<c

µ,α-extensions
Section 8Refined orderings on towers
Section 9Uniqueness of limit models

Part III. In this part of the paper we include a partial result in the direction of Hypothesis 1 and discuss reduced
towers.

Section 10<c
µ,α-Extension property for nice towers

Section 11Reduced towers

Part I. Preliminaries

Throughout this paper, unless otherwise stated, we will makeAssumption 0.7andµ will be a cardinal satisfying
LS(K) ≤ µ < λ whereλ is the categoricity cardinal.

We introduce the necessary definitions and background from [33]. The reader familiar with [33] may skim through
Section 2where the monster model is introduced and then proceed toSection 4which includes some new results on
µ-splitting.
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1. Galois types

In this section we discuss problems that arise when working without the amalgamation property in AECs. The first
obstacle is to identify a reasonable notion of type. Because of the category-theoretic definition of abstract elementary
classes, the first-order notion of formulas and types cannotbe applied. To overcome this barrier, Shelah has suggested
identifying types, not with formulas, but with the orbit of an element under the group of automorphisms fixing a
given structure. In order to carry out this definition of type, the following binary relationE must be an equivalence
relation on triples(a,M, N). In order to avoid confusing this new notion of “type” with the conventional one (i.e. set
of formulas) we will follow [6] and [7] and introduce it below under the name ofGalois type.

Definition I.1.1. For triples(āl,Ml , Nl ) whereāl ∈ Nl andMl �K Nl ∈ K for l = 1,2, we define a binary relation
E as follows:(ā1,M1, N1)E(ā2,M2, N2) iff M := M1 = M2 and there existsN ∈ K and≺K-mappingsf1, f2 such
that fl : Nl → N and fl � M = idM for l = 1,2 and f1(ā1) = f2(ā2):

N1
f1 �� N

M

id

��

id
�� N2

f2

��

To prove thatE is an equivalence relation (more specifically, thatE is transitive), we need to restrict ourselves to
amalgamation bases.

Remark I.1.2. E is an equivalence relation on the set of triples of the form(ā,M, N) whereM �K N , ā ∈ N
and M, N ∈ Kam

µ for fixed µ ≥ LS(K). To seethat E is transitive, consider(a1,M, N1)E(a2,M, N2) and
(a2,M, N2)E(a3,M, N3) where M, N1, N2, N3 ∈ Kam

µ . Let N1,2 and f1, f2 be such thatf1 : N1 → N1,2;
f2 : N2 → N1,2 and f1 � M = f2 � M = idM with f1(a1) = f2(a2). Similarly define g2, g3 and N2,3 with
g2(a2) = g3(a3). By the Downward Löwenheim–Skolem Axiom, we may assume thatN1,2 andN2,3 havecardinality
µ. Consider the following diagram of this situation.

N1
f1 �� N1,2

M

id

��

id
��

id
��

N2

f2

��

g2

��
N3 g3

�� N2,3

SinceN2 was chosen to be an amalgamation base, we can amalgamateN1,2 andN2,3 over N2 with mappingsh1
andh3 and an amalgamN∗ giving us the following diagram:

N1
f1 �� N1,2

h1

���
��

��
��

�

M

id

��

id
��

id
��

N2

f2

��

g2

��

N∗

N3 g3
�� N2,3

h3

����������

Notice thath1( f1(a1)) = h3(g3(a3)). Thush1 ◦ f1 andh3 ◦ g3 witness that(a1,M, N1)E(a3,M, N3).

Remark I.1.3 (Invariance). If M is an amalgamation base andf is a≺K-embedding, thenf (M) is an amalgamation
base.
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In AECs with the amalgamation property, we are often limited to speak of types only over models. Here we are
further restricted to deal with types only over models which are amalgamation bases.

Definition I.1.4. Letµ ≥ LS(K) be given.

(1) For M, N ∈ Kam
µ with M �K N andā ∈ ω>| N |, theGalois type of ā in N over M, written ga-tp(ā/M, N), is

defined to be(ā,M, N)/E .
(2) For M ∈ Kam

µ ,

ga-S1(M) := {ga-tp(a/M, N) | M �K N ∈ Kam
µ , a ∈ N}.

(3) We sayp ∈ ga-S(M) is realized in M ′ wheneverM ≺K M ′ and there exist̄a ∈ M ′ and N ∈ Kam
µ suchthat

p = (ā,M, N)/E .
(4) For M ′ ∈ Kam

µ with M ≺K M ′ andq = ga-tp(ā/M ′, N) ∈ ga-S(M ′), we definethe restriction of q to M as
q � M := ga-tp(ā/M, N).

(5) For M ′ ∈ Kam
µ with M ≺K M ′, we saythatq ∈ ga-S(M ′) extends p ∈ ga-S(M) iff q � M = p.

(6) p ∈ ga-S(M) is said to benon-algebraic if no a ∈ M realizesp.

Notation I.1.5. We will often abbreviate a Galois type, ga-tp(a/M, N) as ga-tp(a/M), when the role ofN is not
crucial or is clear. This occurs mostly when we are working inside of a fixed structureC, which wedefine inSection 2.

Fact I.1.6 (See [7]). When K = Mod(T ) for T a complete first-order theory, the above definition of ga-tp(a/M, N)
coincides with the classical first-order definition where c and a have the same type over M iff for every first-order
formula ϕ(x, b̄) with parameters b̄ from M,

N |= ϕ(c, b̄) iff N |= ϕ(a, b̄).

We will now define Galois stability in an analogous way:

Definition I.1.7. We say thatK is Galois stable in µ if for every M ∈ Kam
µ , | ga-S1(M)| = µ.

Fact I.1.8 (Fact 2.1.3 of [33]). If K is categorical in λ, then for every µ < λ, we have that K is Galois stable in µ.

By combining results from [33,8] and [2] i t ispossible to improve this to conclude Galois stability in some cardinals
≥ λ, but it remains open whether or not in AECs categoricity implies Galois stability in all cardinalities aboveLS(K).
Definition I.1.9. Letµ > LS(K), M is said to beµ-saturated if for every N ≺K M with N ∈ Kam

<µ and every Galois
type p overN , we have thatp is realized inM.

The following fact is proved by showing the equivalence of model homogeneous models and saturated models in
classes which satisfy the amalgamation property [31].

Fact I.1.10. Suppose that K satisfies the amalgamation property. If M1 and M2 ∈ Kµ are µ-saturated and there
exists N ≺K M1,M2 with N ∈ K<µ, then M1 ∼= M2.

Since we will be working in acontext where the amalgamation property is not assumed, we do not have the
uniqueness of saturated models at hand. In fact even the existence of saturated models is questionable. The purpose of
this paper is to identify a suitable substitute for saturation that is unique up to isomorphism in every cardinality. The
candidate is the limit model discussed in the following section. Later we will give an alternative characterization of
limit models as theunion of a relatively full tower (seeSection 6). This characterization plays the role ofFa

κ -saturated
models from first-order model theory (see Chapter IV of [26]).

2. Limit models

In this section we define limit models and discuss their uniqueness and existence. A local substitute for the monster
model is also introduced.

We begin with universal extensions which are central in the definition of limit models. A universal extension
captures some properties of saturated models without referring explicitly to types. The notion of universality over
countable models was first analyzed by Shelah in Theorem 1.4(3) of [22].
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Definition I.2.1. (1) Letκ be a cardinal≥ LS(K). We saythat N is κ-universal over M iff for every M ′ ∈ Kκ with
M ≺K M ′ there exists a≺K-embeddingg : M ′ → N suchthatg � M = idM :

M ′
g

���
��

��
��

�

M

id

��

id
�� N

(2) We sayN is universal over M or N is a universal extension of M iff N is ‖M‖-universal overM.

Notation I.2.2. In diagrams, we will indicate thatN is universal overM, by writing M
id �� N .

Remark I.2.3. Notice that the definition ofN universal over M requires all extensions ofM of cardinality‖M‖ to
be embeddable intoN . First-order variants of this definition in the literature often involve‖M‖ < ‖N‖. We will be
considering the case when‖M‖ = ‖N‖.

Remark I.2.4. Suppose thatT is a first-order complete theory that is stable in some regularµ. Then every modelM
of T of cardinalityµ has an elementary extensionN of cardinalityµ which isuniversal overM. To seethis, define an
elementary-increasing and continuous chain of models ofT of cardinalityµ, 〈Ni | i < µ〉 suchthat Ni+1 realizes all
types overNi . Let N = ⋃

i<µ Ni . By a back-and-forth construction, one can show thatN is universal overM.

The existence of universal extensions in AECs follows from categoricity inλ and GCH or categoricity and uses the
presentation of the model of cardinalityλ as a reduct of an EM-model.

Fact I.2.5 (Theorem 1.3.1 from [33]). Let µ be such that LS(K) ≤ µ < λ. Then every element of Kam
µ has a

universal extension in Kam
µ .

Another existence result that does not use GCH or categoricity can be proved under the assumption of Galois
stability and the amalgamation property ([32] or see [8] for a proof).

Notice that the following observation asserts that it is unreasonable to prove a stronger existence statement than
Fact I.2.5, without having proved the amalgamation property.

Proposition I.2.6. If M ∈ Kµ has a universal extension, then M is an amalgamation base.

We can now define the principal concept of this paper:

Definition I.2.7. For M ′,M ∈ Kµ andσ a limit ordinal with σ < µ+, we saythat M ′ is a (µ, σ )-limit over M iff
there exists a≺K-increasing and continuous sequence of models〈Mi ∈ Kµ | i < σ 〉 suchthat

(1) M = M0,
(2) M ′ = ⋃

i<σ Mi

(3) for i < σ , Mi is an amalgamation base and
(4) Mi+1 is universal overMi .

Remark I.2.8. (1) Notice that inDefinition I.2.7, for i < σ andi a limit ordinal, Mi is a(µ, i)-limit model.
(2) Notice that Condition (3) implies Condition (4) ofDefinition I.2.7. In our constructions, since the question

of whether a particular model is an amalgamation base becomes crucial, we choose to list this as a separate
condition.

Definition I.2.9. We say thatM ′ is a(µ, σ )-limit iff there is someM ∈ K suchthat M ′ is a(µ, σ )-limit over M.

While limit models were used is [14] and [28], their use extends to other contexts. There is evidence that
the uniqueness of limit models provides a basis for the development of a notion of non-forking and a stability
theory for abstract elementary classes. Limit models are used in [8] to develop the notion ofnon-splitting in tame,
Galois-stable AECs. The uniqueness of limit models implies the existence of superlimits in [31]. Additionally,
in [32] the uniqueness of limit models appears as an axiomfor good frames and the limit models are closely
related to brimmed models. In all of these applications, limit models provide a substitute for Galois-saturated
models.
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By repeated applications ofFact I.2.5, the existence of(µ, ω)-limit models can be proved:

Fact I.2.10 (Theorem 1.3.1 from [33]). Let µ be a cardinal such that µ < λ. For every M ∈ Kam
µ , there is a (µ, ω)-

limit over M.

In order to extend this argument further to yield the existence of(µ, σ )-limits for arbitrary limit ordinalsσ < µ+,
we need to be able to verify that limit models are in fact amalgamation bases. We will examine this inSection 3.

While the existence of limit models can be derived from the categoricity and weak diamond assumptions, the
uniqueness of limit models is more difficult. Here we recall two easy uniqueness facts which state that limit
models of the same length are isomorphic. They are proved using the natural back-and-forth construction of an
isomorphism.

Fact I.2.11 (Fact 1.3.6 from [33]). Let µ ≥ LS(K) and σ < µ+. If M1 and M2 are (µ, σ )-limits over M, then there
exists an isomorphism g : M1 → M2 such that g � M = idM. Moreover if M1 is a (µ, σ )-limit over M0; N1 is a
(µ, σ )-limit over N0 and g : M0 ∼= N0, then there exists a ≺K-mapping, ĝ, extending g such that ĝ : M1 ∼= N1.

M1
ĝ �� N1

M0

id

��

g
�� N0

id

��

Fact I.2.12 (Fact 1.3.7 from [33]). Let µ be a cardinal and σ a limit ordinal with σ < µ+ ≤ λ. If M is a (µ, σ )-limit
model, then M is a (µ, c f (σ ))-limit model.

A more challenging uniqueness question is to prove that two limit models of different lengths (σ1 �= σ2) are
isomorphic:

Conjecture I.2.13. Suppose that K is categorical in some λ ≥ Hanf(K) and µ is a cardinal with LS(K) ≤ µ < λ.
Let σ1 and σ2 be limit ordinals< µ+. Suppose M1 and M2 are (µ, σ1)- and (µ, σ2)-limits over M, respectively. Then
M1 is isomorphic to M2 over M.

The main result of this paper,Theorem II.9.1, is a solution to this conjecture underAssumption 0.7and
Hypothesis 1.

We will need one more notion of limit model, which will later serve as a substitute for a monster model. This is a
natural extension of the limit models already defined:

Definition I.2.14. Let µ be a cardinal< λ, we saythat M̌ is a(µ,µ+)-limit over M iff there exists a≺K-increasing
and continuous chain of models〈Mi ∈ Kam

µ | i < µ+〉 suchthat M0 = M,
⋃

i<µ+ Mi = M̌ , and fori < µ+, Mi+1
is universal overMi .

Remark I.2.15. While it is known that in our context(µ, θ)-limit models are amalgamation bases whenθ < µ+,
it is open whether or not(µ,µ+)-limits are amalgamation bases. To avoid confusion between these two concepts of
limit models, we will denote(µ,µ+)-limit models with ǎ above the model’s name (i.e.̌M). Later we will avoid this
confusion by fixing a(µ,µ+)-limit model and denoting it byC, since it will substitute the usual notion of a monster
model.

The existence of(µ,µ+)-limit models follows from the fact that(µ, θ)-limit models are amalgamation bases when
θ < µ+, seeCorollary I.3.14. Theuniqueness of(µ,µ+)-limit models (Corollary I.2.20) can be shown using an easy
back-and-forth construction as in the proof ofFact I.2.11.

The following theorem indicates that(µ,µ+)-limits provide some level of homogeneity. First we recall an exercise
regarding amalgamation.

Remark I.2.16. Suppose thatM0, M1 andM2 can be amalgamated, then by renaming elements, we can choose the
amalgam to be a≺K-extension ofM2.
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Theorem I.2.17. If M̌ is a (µ,µ+)-limit, then for every N ≺K M̌ with N ∈ Kam
µ , we have that M̌ is universal over

N. Moreover, M̌ is a (µ,µ+)-limit over N.

Proof. Suppose thatM̌ is a (µ,µ+)-limit model andN ≺K M̌ is such thatN ∈ Kam
µ . Let N ′ be an extension ofN

of cardinalityµ. Let 〈Mi | i < µ+〉 witness thatM̌ is a(µ,µ+)-limit model. SinceN has cardinalityµ, thereexists
i < µ+, such that N ≺K Mi . SinceN is an amalgamation base, we can amalgamateMi andN ′ overN with amalgam
M ′ ∈ Kµ. By RemarkI.2.16, we mayassume thatMi ≺K M ′.

N ′ h �� M ′

N

id

��

id
�� Mi

id

��

SinceMi+1 is universal overMi , there isg : M ′ → Mi+1 suchthatg � Mi = idMi . Theng ◦ h give us the desired
mapping fromN ′ into M̌ over N .

N ′ h �� M ′
g

		�
��������

N

id

��

id
�� Mi

id

��

id
�� Mi+1 �

Remark I.2.18. If N is not an amalgamation base, then there are no universal models overN .

It is immediate thatC realizes many types:

Corollary I.2.19. For every M ∈ Kam
µ with M ≺K C, we have that C is saturated over M.

Corollary I.2.20. Suppose M̌1 and M̌2 are (µ,µ+)-limits over M1,M2 ∈ Kam
µ , respectively. If there exists an

isomorphism h : M1 ∼= M2, then h can be extended to an isomorphism g : M̌1 ∼= M̌2.

Since(µ,µ+)-limit models are unique and are universal over all amalgamation bases of cardinalityµ, they are
in some sensehomogeneous. We will see that if̌M is a(µ,µ+)-limit model and ga-tp(a/M, M̌) = ga-tp(b/M, M̌),
then there is an automorphismf of M̌ fixing M suchthat f (a) = b (Corollary I.2.25). In some ways,(µ,µ+)-limit
models behave like monster models in first-order logic if we restrict ourselves to amalgamation bases and models of
cardinalityµ. This justifies the following notation.

Notation I.2.21. We fix a cardinalµ with LS(K) ≤ µ < λ and a(µ,µ+)-limit model and denote it byC. For
M ≺K C we abbreviate

{ f | f is an automorphism ofC with f � M = idM}
by AutM (C).

While it is customary to work entirely inside of a fixed monster modelC in first-order logic, we will sometimes
need to consider structures outside ofC since we donot have the full power of model homogeneity in this context.

We now recall a result from [33] which will be used inour proof of Corollary I.2.25. Although Shelah and
Villaveces work without the amalgamation property as an assumption, using weak diamond they prove a weak
amalgamation property, which they refer to asdensity of amalgamation bases.

Fact I.2.22 (Theorem 1.2.4 from [33]). Every M ∈ K<λ has a proper K-extension of the same cardinality which is
an amalgamation base.

We can now improveFact I.2.5slightly. This improvement is used throughout this paper.
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Lemma I.2.23. For every µ with LS(K) ≤ µ < λ, if M ∈ Kam
µ , N ∈ K and ā ∈ µ+>| N | are such that M ≺K N,

then there exists Mā ∈ Kam
µ such that Mā is universal over M and M

⋃
ā ⊆ Mā.

Proof. By Axiom 4 of AEC, we can findM ′ ≺K N of cardinalityµ containingM
⋃

ā. Applying Fact I.2.22, there
exists an amalgamation base of cardinalityµ, sayM ′′, extendingM ′. By Fact I.2.5we can find a universal extension
of M ′′ of cardinalityµ, sayMā .

Notice thatMā is also universal overM. Why? SupposeM∗ is an extension ofM of cardinalityµ. SinceM is an
amalgamation base we can amalgamateM ′′ andM∗ over M. WLOG we may assume that the amalgam,M∗∗, is an
extension of M ′′ of cardinalityµ and a≺K-mapping f ∗ : M∗ → M∗∗ with f ∗ � M = idM .

M∗ f ∗∗
�� M∗∗

g



�
��

��
��

�

M

id

��

id
�� M

′′

id

��

id
�� Mā

Now, sinceMā is universal overM ′′, there exists a≺K-mappingg suchthatg : M∗∗ → Mā with g � M ′′ = idM ′′ .
Notice thatg ◦ f ∗ gives us the desired mapping ofM∗ into Mā . �

Notice thatLemma I.2.23is a step closer to proving thatKam satisfiesAxiom 4 of the definition of AEC as it gives
a weak downward L¨owenheim–Skolem property. It is an open question whether or notKam is an AEC.1

An alternative version ofLemma I.2.23gives us

Lemma I.2.24. Given amalgamation bases of cardinality µ, M1 and M2. If M1,M2 ≺K C, then there exists an
amalgamation base M ′ ≺K C of cardinality µ that is universal over both M1 and M2.

Proof. Let 〈M ′
i | i < µ+〉 witness thatC is a (µ,µ+)-limit model. Then there existsi < µ+ such that

M1,M2 ≺K M ′
i . Notice that by choice of the sequence〈M ′

j | j < µ+〉, we have thatM ′
i+1 is universal over

M ′
i . Thus, using the assumption thatM1 andM2 are amalgamation bases,M ′

i+1 is universal overM1 andM2. �

The following is a corollary ofTheorem I.2.17and justifies our choice of notation for(µ,µ+)-limit models.

Corollary I.2.25. If ga-tp(a/M,C) = ga-tp(b/M,C), then there is an automorphism f of C fixing M such that
f (a) = b.

Proof. Suppose that ga-tp(a/M,C) = ga-tp(b/M,C). By Theorem I.2.17, C is a (µ,µ+)-limit over M. Let
〈Mi ∈ Kam

µ | i < µ+〉 witness this. There exists ani < µ+ suchthat a, b ∈ Mi . Denote Mi by both Ma and
Mb . By definition of types, there is a modelN of cardinalityµ and≺K-mappingsg, h suchthatg(a) = h(b) and the
following diagram commutes:

Ma
g �� N

M

id

��

id
�� Mb

h

��

Notice thatC is universal over Mb. So there is a≺K-mapping, f ′ : N → C such that the following diagram
commutes:

Ma
g �� N

f ′

���
��

��
��

�

M

id

��

id
�� Mb

h

��

id
�� C

1 The main difficulty is Axiom 5.
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Consider f ′ ◦g. Notice that it is a partial automorphism with domainMa . By Corollary I.2.20applied to f ′ ◦g(Ma)

andMa , the mapping f ′ ◦ g can be extended to an automorphism ofC, call such an extensionf . Then, f � M = idM

and f (a) = f ′ ◦ g(a) = f ′(h(b)) = b, as required. �

3. Limit models are amalgamation bases

While Fact I.2.22asserts the existence of amalgamation bases, it is useful to identify what other features are
sufficient for a model to be an amalgamation base. Makkai and Shelah were able to prove that all existentially closed
models are amalgamation bases forLκ,ω theories withκ above a strongly compact cardinal (Corollary 1.6 of [16]).
Kolmanand Shelah identified a concept calledniceness which implied amalgamation in categoricalLκ,ω theories with
κ above a measurable cardinal. (Note: Their notion of niceness is notrelated to the notion of nice towers appearing in
Section 5). They then showed that every model of cardinality< λ was nice (see [14]). These resultsrelied heavily on
set theoretic assumptions.

In a more general context, Shelah and Villaveces state that every limit model is an amalgamation base (Fact 1.3.10

of [33]), using♦µ+(Sµ
+

cf(µ)). For completeness, weprovide a proof that every(µ, θ)-limit model with θ < µ+ is an

amalgamation base under a weaker version of diamond(�µ+(Sµ
+

cf(µ))). This is the content ofTheorem I.3.13.
Let us first recall the set theoretic and model theoretic machinery necessary for the proof.

Definition I.3.1. Let θ be a regular ordinal< µ+. We denote

Sµ
+

θ := {α < µ+ | cf(α) = θ}.
The�-principle defined next is known asDevlin and Shelah’s weak diamond [4].

Definition I.3.2. Forµ a cardinal andS ⊆ µ+ a stationary set, the weak diamond, denoted by�µ+(S) , is said to

hold iff for all F : µ+>2 → 2 thereexists g : µ+ → 2 such that for every f : µ+ → 2 the set

{δ ∈ S | F( f � δ) = g(δ)} is stationary.

We will be using a consequence of�µ+(S), called
µ+(S) (see [7]).

Definition I.3.3. Forµ a cardinalS ⊆ µ+ a stationary set,
µ+(S) is said to hold if and only if for all families of
functions

{ fη : η ∈ µ+
2 where fη : µ+ → µ+}

and for every clubC ⊆ µ+, there existη �= ν ∈ µ+
2 and there exists aδ ∈ C ∩ S suchthat

(1)η � δ = ν � δ,
(2) fη � δ = fν � δ and
(3)η(δ) �= ν(δ).

The relative strength of these principles is provided below. See [7] for details.

Fact I.3.4. For S a stationary subset of µ+, ♦µ+(S) =⇒ �µ+(S) =⇒ 
µ+(S).

For most regularθ < µ+, Fact I.3.4and the following imply that�µ+(Sµ
+

θ ) follows from GCH:

Fact I.3.5 ([5] for µ Regular and [21] for µ Singular). For every µ > ℵ1, GCH =⇒ ♦µ+(S) where S = Sµ
+

θ for
any regular θ �= cf(µ).

Thus, from GCH and�µ+(Sµ
+

cf(µ)) we have that�µ+(Sµ
+

θ ) holds for every regularθ < µ+.
In addition to the weak diamond, we will be using Ehrenfeucht–Mostowski models. Let us recall some facts

here.
The following gives a characterization of AECs asPC-classes.Fact I.3.7 is often referred to as Shelah’s

Presentation Theorem.
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Definition I.3.6. A classK of structures is called aPC-class if there exists a languageL1, a first-order theoryT1 in
the languageL1 and a collection of types without parameters,Γ , such that L1 is an expansion ofL(K) and

K = PC(T1,Γ , L) := {M � L : M |= T1 andM omits all types fromΓ }.
When|T1| + |L1| + |Γ | + ℵ0 = χ , we saythatK is PCχ . PC-classes are sometimes referred to asprojective classes
or pseudo-elementary classes.

Fact I.3.7 (Lemma 1.8 of [24] or See [7]). If (K,≺K) is an AEC, then there exists χ ≤ 2L S(K) such that K is PCχ .

The representation of AECs asPC-classes allows us to construct Ehrenfeucht–Mostowski models if there are
arbitrarily large models in our class.

Definition I.3.8. Given an AECK, we define theHanf number of K, abbreviated Hanf(K), as the minimalκ suchthat
for everyPC2L S(K) -class,K′, if there exists a modelM ∈ K′ of cardinalityκ , then there are arbitrarily large models
in K′.

Fact I.3.9 (Claim 0.6 of [28] or See [7]). Assume that K is an AEC that contains a model of cardinality ≥
�
(22L S(K)

)+ . Then, there is a Φ, proper for linear orders,2 such that for all linear orders I ⊆ J we have that

(1) E M(I,Φ) � L(K) ≺K E M(J,Φ) � L(K) and
(2)‖E M(I,Φ) � L(K)‖ = |I | + LS(K).

It is a theorem of C.C. Chang based on a theorem of Morley that Hanf(K) ≤ �
(22L S(K)

)+ (see Section 4 of Chapter
VII o f [26]). Morley’s proof [18] gives a better upper bound in certain situations: for a classK that isPCℵ0, theHanf
number ofK is ≤ �ω1.

In our context, sinceK has no maximal models,K has amodel of cardinality Hanf(K). Then byFact I.3.9, wecan
construct Ehrenfeucht–Mostowski models.

Wedescribe an index set which appears often in papers about the categoricity conjecture. This index set appears in
several places including [14,28] and [33].

Notation I.3.10. Let α < λ be given.
For X ⊆ α, we define

IX := {
η ∈ ωX : {n < ω | η(n) �= 0} is finite}}.

The following fact is proved in several papers e.g. [33].

Fact I.3.11. If M ≺K E M(Iλ,Φ) � L(K) is a model of cardinality µ+ with µ+ < λ, then there exists a ≺K-mapping
f : M → E M(Iµ+ ,Φ) � L(K).

A variant of this universality property is (implicit in Lemma 3.7 of [14] or see [1]):

Fact I.3.12. Suppose κ is a regular cardinal. If M ≺K E M(Iκ ,Φ) � L(K) is a model of cardinality < κ

and N ≺K E M(Iλ,Φ) � L(K) is an extension of M of cardinality ‖M‖, then there exists a ≺K-embedding
f : N → E M(Iκ ,Φ) � L(K) such that f � M = idM.

We now prove thatlimit models are amalgamation bases.

Theorem I.3.13. Under Assumption 0.7, if M is a (µ, θ)-limit for some θ with θ < µ+ ≤ λ, then M is an
amalgamation base.

Proof. Givenµ, suppose thatθ is the minimal infinite ordinal< µ+ such that there exists a modelM which is a
(µ, θ)-limit and not an amalgamation base. Notice that byFact I.2.12, we mayassume that cf(θ) = θ . We assume
that all models have as their universe a subset ofµ+.

2 Alsoknown as a blueprint, see Definition 2.5 of Chapter VII, Section 5 of [26] for a formal definition.
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For this proof we will make use of the following notation. We will consider binary sequences ordered by initial
segment and denote this ordering by�. Forη ∈ α2 we usel(η) as an abbreviation for the length ofη, in this case
l(η) = α.

With the intention of eventually applying
µ+(Sµ
+

θ ), we will define a treeof structures〈Mη ∈ Kµ | η ∈ µ+>2〉
such that whenl(η) has cofinality θ , Mη will be a (µ, θ)-limit model andMηˆ0,Mηˆ1 will witness thatMη is not an
amalgamation base. After this tree of structures is defined we will embed each chain of models into a universal model

of cardinalityµ+. We will apply 
µ+(Sµ
+

θ ) to these embeddings.
µ+(Sµ
+

θ ) will provide an amalgam forMηˆ0 and
Mηˆ1 overMη for some sequenceη whose length has cofinalityθ , giving us a contradiction.

In order to construct such a tree of models, we will need several conditions to hold throughout the inductive
construction:

(1) M �K M〈〉
(2) for η � ν ∈ µ+>2, Mη ≺K Mν

(3) for l(η) a limit ordinal with cf(l(η)) ≤ θ , Mη = ⋃
α<l(η) Mη�α

(4) for η ∈ α2 with α ∈ Sµ
+

θ ,
(a) Mη is a(µ, θ)-limit model
(b) Mηˆ〈0〉,Mηˆ〈1〉 cannot be amalgamated overMη

(c) Mηˆ〈0〉 andMηˆ〈1〉 are amalgamation bases of cardinalityµ

(5) for η ∈ α2 with α /∈ Sµ
+

θ ,
(a) Mη is an amalgamation base
(b) Mηˆ〈0〉,Mηˆ〈1〉 are universaloverMη and
(c) Mηˆ〈0〉 andMηˆ〈1〉 are amalgamation bases of cardinalityµ (it may be thatMηˆ〈0〉 = Mηˆ〈1〉 in this case).

This construction is possible:
η = 〈〉: By Fact I.2.22, wecan findM ′ ∈ Kam

µ suchthat M ≺K M ′. DefineM〈〉 := M ′.
l(η) is a limit ordinal: Whencf(l(η)) > θ , let M ′

η := ⋃
α<l(η) Mη�α . M ′

η is not necessarily an amalgamation base,
but for thepurposes of this construction, continuity at such limits is not important. Thus byFact I.2.22we can find an
extension of M ′

η , sayMη , of cardinalityµ suchthat Mη is an amalgamation base.

Forη with cf(l(η)) ≤ θ , we require continuity. DefineMη := ⋃
α<l(η) Mη�α . We need to verify that ifl(η) /∈ Sµ

+
θ ,

then Mη is an amalgamation base. In fact, we will show that such aMη will be a (µ, cf(l(η)))-limit model. Let
〈αi | i < cf(l(η))〉 be an increasing and continuous sequence of ordinals converging tol(η) such that cf(αi ) < θ

for everyi < cf(l(η)). Condition (5b) guarantees that fori < cf(l(η)), Mη�αi+1 is universal over Mη�α . Additionally,
condition (3) ensures us that〈Mη�αi | i < cf(l(η))〉 is continuous. This sequence of models witnesses thatMη is
a (µ, cf(l(η)))-limit model. By our minimal choice ofθ and our assumption that in this phase of the construction
cf(l(η)) � θ , we have that(µ, cf(l(η)))-limit models are amalgamation bases. ThusMη is an amalgamation
base.
ηˆ〈i〉 where l(η) ∈ Sµ

+
θ : We first notice thatMη := ⋃

α<l(η) Mη�α is a(µ, θ)-limit model. Why? Sincel(η) ∈ Sµ
+

θ

andθ is regular, we can find an increasing and continuous sequence of ordinals,〈αi | i < θ〉 converging tol(η) such
that for eachi < θ we have that cf(αi ) < θ . Condition (5b) of the construction guarantees that for eachi < θ , Mη�αi+1

is universal overMη�αi . Thus〈Mη�αi | i < θ〉 witnesses thatMη is a(µ, θ)-limit model.
SinceMη is a(µ, θ)-limit, we can fix an isomorphismf : M ∼= Mη. By RemarkI.1.3, Mη is not an amalgamation

base. Thus there existMηˆ0 and Mηˆ1 extensions of Mη which cannot be amalgamated overMη. WLOG, by the
Density of Amalgamation Bases, we can chooseMηˆ〈0〉 andMηˆ〈1〉 to be elements ofKam

µ .

ηˆ〈i〉 where l(η) /∈ Sµ
+

θ : SinceMη is an amalgamation base, we can chooseMηˆ〈0〉 andMηˆ〈1〉 to be extensions of
Mη suchthat Mηˆ〈l〉 ∈ Kam

µ andMηˆ〈l〉 is universal overMη, for l = 0,1.
This completes the construction. LetC be a club containing{α < µ+ | Mα has universeα}.
For everyη ∈ µ+

2, defineMη := ⋃
α<µ+ Mη�α . Notice that by condition (5b) of the construction, eachMη has

cardinalityµ+. By categoricity inλ andFact I.3.11, wecan fix a≺K-mappinggη : Mη → E M(Iµ+ ,Φ) � L(K) for

eachη ∈ µ+
2. Now apply
µ+(Sµ

+
θ ) to findη, ν ∈ µ+

2 andα ∈ Sµ
+

θ ∩ C suchthat

· ρ := η � α = ν � α,
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· η(α) = 0, ν(α) = 1 and
· gη � Mρ = gν � Mρ .

Let N := E M(Iµ+ ,Φ) � L(K). Then the following diagram commutes:

Mρˆ〈1〉
gν�Mρˆ〈1〉 �� N

Mρ

id

��

id
�� Mρˆ〈0〉

gη�Mρˆ〈0〉

��

Notice thatgη � Mρˆ〈0〉 and gν � Mρˆ〈1〉 witness thatMρˆ〈0〉 and Mρˆ〈1〉 can be amalgamated overMρ . Since

l(ρ) = α ∈ Sµ
+

θ , Mρˆ〈0〉 andMρˆ〈1〉 were chosen so that they cannot be amalgamated overMρ . Thus, we contradict
condition (4b) of the construction.�

Now that we have verified that limit models are amalgamation bases, we can use the existence of universal
extensions to construct(µ, θ)-limit models for arbitraryθ < µ+.

Corollary I.3.14 (Existence of Limit Models). For every cardinal µ and limit ordinal θ with θ ≤ µ+ ≤ λ, if M is an
amalgamation base of cardinality µ, then there exists a (µ, θ)-limit over M.

Proof. By repeated applications ofFact I.2.5(existence of universal extensions) andTheorem I.3.13. �

In addition to the fact that limit models are amalgamation bases, we willuse an even stronger amalgamation
property of limit models. It is a result of Shelah and Villaveces. The argument provided is a simplification of the
original and was suggested by J. Baldwin.

Fact I.3.15 (Weak Disjoint Amalgamation [33]). Given λ > µ ≥ LS(K) and α, θ0 < µ+ with θ0 regular. If M0 is a
(µ, θ0)-limit and M1,M2 ∈ Kµ are ≺K-extensions of M0, then for every b̄ ∈ α(M1\M0), there exist M3, a model,
and h, a ≺K-embedding, such that

(1) h : M2 → M3;
(2) h � M0 = idM0 and
(3) h(M2) ∩ b̄ = ∅ (equivalently h(M2) ∩ M1 = M0).

Proof. Let M0, M1 andM2 be given as in the statement of the claim. First notice that we may assume thatM0, M1
andM2 are such that there is aδ < µ+ with M0 = M1 ∩ (E M(Iδ,Φ) � L(K)) andM1,M2 ≺K E M(Iµ+ ,Φ) � L(K).
Why? Define〈Ni ∈ Kµ | i < µ+〉 a≺K-increasing and continuous chain of amalgamation bases such that

(1) N0 = M0 and
(2) Ni+1 is universal overNi .

Let Nµ+ = ⋃
i<µ+ Ni . By categoricity andFact I.3.11, there exists a≺K-mapping f such that f : Nµ+ →

E M(Iµ+ ,Φ) � L(K). Considerthe club C = {δ < µ+ | f (Nµ+) ∩ (E M(Iδ,Φ) � L(K)) = f (Nδ)}. Let

δ ∈ C ∩ Sµ
+

cf(θ0)
. Notice that f (Nδ) is a (µ, cf(θ0))-limit model. SinceM0 is also a(µ, cf(θ0))-limit model, there

exists g : M0 ∼= f (Nδ). Since f (Nδ+1) is universal over f (Nδ), wecan extendg to g′ suchthatg′ : M1 → f (Nδ+1)

with g′(M1)∩E M(Iδ ,Φ) � L(K) = g′(M0). Thus we may takeM0, M1 andM2 with M0 = M1∩E M(Iδ,Φ) � L(K).
Let δ be such thatM1 ∩ (E M(Iδ,Φ) � L(K)) = M0 and letδ∗ < µ+ be such thatM1,M2 ≺K E M(Iδ∗) � L(K).

Let h be theK mapping fromE M(Iδ∗) � L(K) into E M(Iµ+ ,Φ) � L(K) induced by

α �→ δ∗ + α

for all α < δ∗.
We will show that if b ∈ M1\M0 thenb /∈ h(M2). Suppose for the sake of contradiction thatb ∈ M1\M0 and

b ∈ h(M2). Let τ be a Skolem term and let̄α, β̄ be finite sequences such thatᾱ ∈ Iδ and β̄ ∈ Iδ∗\Iδ , satisfying
b = τ (ᾱ, β̄).
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Sinceb ∈ h(M2), there exists a Skolem termσ and finite sequences̄α′ ∈ Iδ and β̄ ′ ∈ Iµ+\Iδ∗ satisfying
b = σ(ᾱ′, β̄ ′).

Sinceβ̄ ′ andβ̄ are disjoint, we can find̄γ ′ andγ̄ ∈ Iδ such that the type ofβ̄ ′ˆβ̄ is the same as the type of γ̄ ′ˆγ̄
over ᾱ′ˆᾱ with respect to the lexicographical order ofIµ+ . Notice then that the type ofβ̄ ′ andγ̄ ′ over γ̄ ˆᾱ′ˆᾱ are the
same with respect to the lexicographical ordering.

Recall

E M(Iµ+ ,Φ) � L(K) |= b = τ (ᾱ, β̄) = σ(ᾱ′, β̄ ′).

Thus

E M(Iµ+ ,Φ) � L(K) |= τ (ᾱ, γ̄ ) = σ(ᾱ′, γ̄ ′).

Sinceγ̄ ′ andβ̄ ′ look the same over̄γ ˆᾱ′ˆᾱ, we also have

E M(Iµ+ ,Φ) � L(K) |= τ (ᾱ, γ̄ ) = σ(ᾱ′, β̄ ′).

Combining the implications gives us a representation ofb with parameters fromIδ . Thusb ∈ E M(Iδ,Φ) � L(K).
SinceM0 = M1 ∩ (E M(Iδ,Φ) � L(K)), we getthatb ∈ M0 which contradicts our choice ofb. �

Let us state an easy corollary ofFact I.3.15that will simplify future constructions:

Corollary I.3.16. Suppose µ, M0, M1, M2 and b̄ are as in the statement of Fact I.3.15. If M1 ≺K C, then there exists
a ≺K-mapping h such that

(1) h : M2 → C,
(2) h � M0 = idM0 and
(3) h(M2) ∩ b̄ = M0 (equivalently h(M2) ∩ M1 = ∅).

Proof. By Fact I.3.15, there exists a≺K-mappingg and a modelM3 of cardinalityµ suchthat

· g : M2 → M3

· g � M0 = idM0

· g(M2) ∩ b̄ = M0 and
· M1 ≺K M3.

SinceC is universal over M1, we can fix a≺K-mapping f suchthat f : M3 → C and f � M1 = idM1. Notice that
h := g ◦ f is the desired mapping fromM2 into C. �

4. µ-Splitting

Appearing in [28] isµ-splitting, which is a generalization of the first-order notion of splitting to AECs. Most results
concerningµ-splitting areproved under the assumption of categoricity. Just recently Grossberg and VanDieren have
made progress without categoricity by consideringµ-splitting in Galois-stable, tame AECs (see [8]).

In this section we will develop non-µ-splitting as our dependence relation and prove the extension and uniqueness
properties for non-µ-splitting types.

Before definingµ-splitting we need to describe what is meant by the image of a Galois type:

Definition I.4.1. Let M be an amalgamation base andp ∈ ga-S(M). If h is a ≺K-mapping with domainM we
can defineh(p) as follows. SinceC is saturated overM (Corollary I.2.19), we can fixa ∈ C realizing p. By
Corollary I.2.20, wecan extendh to ȟ an automorphism ofC. Denote by

h(p) := ga-tp(ȟ(a)/h(M)).

The verification that this definition does not depend on our choices ofȟ anda is left to the reader.
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Definition I.4.2. Letµ be a cardinal withµ < λ. For M ∈ Kam and p ∈ ga-S(M), we saythat p µ-splits over N iff
N ≺K M and there exist amalgamation basesN1, N2 ∈ Kµ and a≺K-mappingh : N1 ∼= N2 suchthat

(1) N ≺K N1, N2 ≺K M,
(2) h(p � N1) �= p � N2 and
(3) h � N = idN .

Remark I.4.3. If T is a first-order theory stable inµ andM is saturated, then for allN ≺ M of cardinalityµ, the
first-order type, tp(a/M), does not split (in the first-order sense) overN iff ga-tp(a/M) does notµ-split over N .

Let us state some easy facts concerningµ-splitting.

Remark I.4.4. Let N ≺K M ≺K M ′ beamalgamation bases of cardinalityµ such that ga-tp(a/M ′) does notµ-split
over N .

(1) (Monotonicity) Then ga-tp(a/M) does notµ-split over N .
(2) (Invariance) Ifh is a≺K-mapping with domainM ′, h(ga-tp(a/M ′)) does notµ-split over h(N).

The following appears in [28] under the assumption of the amalgamation property. The same conclusion holds in
this context.

Fact I.4.5 (Claim 3.3.1 of [28]). If K is µ-Galois stable and K satisfies the amalgamation property, then for every
M ∈ K≥µ and every p ∈ ga-S(M), there exists a N ≺K M of cardinality µ such that N ∈ K and p does not µ-split
over N.

Shelah and Villaveces draw connections between categoricity and superstability properties usingµ-splitting. Let
usrecall some first-order consequences of superstability.

Fact I.4.6. Let T be a countable first-order theory. Suppose T is superstable.

(1) If 〈Mi | i ≤ σ 〉 is a ≺-increasing and continuous chain of models and σ is a limit ordinal, then for every
p ∈ S(Mσ ), there exists i < σ such that p does not fork over Mi .

(2) Let T be a countable first-order theory. Suppose T is superstable. Let 〈Mi | i ≤ σ 〉 be a ≺-increasing and
continuous chain of models with σ a limit ordinal. If p ∈ S(Mσ ) is such that for every i < σ , p � Mi does not
fork over M0, then p does not fork over M0.

These results are consequences ofκ(T ) = ℵ0
3 and the finite character of forking (see Chapter III Section 3 of

[26]). It is interesting that Shelah and Villaveces manage toprove analogs of these theorems without having the finite
character ofµ-splitting or the compactness theorem.

Fact I.4.7is an analog ofFact I.4.6(1), restated: under the assumption ofcategoricity there are no long splitting
chains. The proof of this fact relies on a combinatorial blackbox principle (see Chapter III of [27].)

Fact I.4.7 (Theorem 2.2.1 from [33]). Under Assumption 0.7, suppose that

(1) 〈Mi | i ≤ σ 〉 is ≺K-increasing and continuous,
(2) for all i ≤ σ , Mi ∈ Kam

µ ,
(3) for all i < σ , Mi+1 is universal over Mi and
(4) p ∈ ga-S(Mσ ).

Then there exists an i < σ such that p does not µ-split over Mi .

Implicit in Shelah and Villaveces’ proof ofFact I.4.7is a statement similar toFact I.4.6(2). The proof ofFact I.4.7
is by contradiction. IfFact I.4.7fails to be true, then there is a counter-example that has one of three properties (cases
(a), (b), and (c) of their proof). Each case is separately refuted. Case (a) yields:

Fact I.4.8. Under Assumption 0.7, suppose that

(1) 〈Mi | i ≤ σ 〉 is ≺K-increasing and continuous,

3 κ(T ) is the locality cardinal of non-forking; see Definition 3.1 in Chapter III Section 3 of [26].
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(2) for all i ≤ σ , Mi ∈ Kam
µ ,

(3) for all i < σ , Mi+1 is universal over Mi ,
(4) p ∈ ga-S(Mσ ) and
(5) p � Mi does not µ-split over M0 for all i < σ .

Then p does not µ-split over M0.

The proofs ofFact I.4.7andFact I.4.8use the full power of the categoricity assumption. In particular, Shelah and
Villaveces use the fact that every model can be embedded into a reduct of an Ehrenfeucht–Mostowski model. It is
open as to whether or not the categoricity assumption can be removed:

Question I.4.9. Can statements similar toFacts I.4.7andI.4.8be proved under the assumption of any of the working
definitions of Galois superstability?

Wenow derive the extension and uniqueness properties for non-splitting types (Theorems I.4.10andI.4.12). These
results do not rely on any assumptions on the class. We will use these properties to find extensions of towers, but they
are also useful for developing a stability theory for tame abstract elementary classes in [8].

Theorem I.4.10 (Extension of Non-splitting Types). Suppose that M ∈ Kµ is universal over N and ga-tp(a/M,C)
does not µ-split over N, when C is a (µ,µ+)-limit containing a

⋃
M.

Let M ′ ∈ Kam
µ be an extension of M with M ′ ≺K C. Then there exists a ≺K-mapping g ∈ AutM (C) such that

ga-tp(a/g(M ′)) does notµ-split over N. Equivalently, g−1 ∈ AutM (C) is such that ga-tp(g−1(a)/M ′) does notµ-split
over N.

Proof. Since M is universal over N , there exists a ≺K-mappingh′ : M ′ → M with h′ � N = idN . By
Corollary I.2.20, we can extendh′ to an automorphismh of C. Notice that by monotonicity, ga-tp(a/h(M ′)) does
notµ-split over N . By invariance,

ga-tp(h−1(a)/M ′) does notµ-split over N. (∗)
Subclaim I.4.11. ga-tp(h−1(a)/M) = ga-tp(a/M).

Proof. We will use the notion ofµ-splitting to prove this subclaim. So let us rename the models in such a way
that our application of the definition ofµ-splitting will become transparent. LetN1 := h−1(M) and N2 := M. Let
p := ga-tp(h−1(a)/h−1(M)). Consider the mappingh : N1 ∼= N2. By invariance,p does notµ-split over N . Thus,
h(p � N1) = p � N2. Let uscalculate this

h(p � N1) = ga-tp(h(h−1(a))/h(h−1(M))) = ga-tp(a/M).

While,

p � N2 = ga-tp(h−1(a)/M).

Thus ga-tp(h−1(a)/M) = ga-tp(a/M) is as required. �

From the subclaim, we can find a≺K-mappingg ∈ AutM (C) suchthatg ◦ h−1(a) = a. Notice that by applying g
to (∗) we get

ga-tp(a/g(M ′),C) does notµ-split over N. (∗∗)
Applying g−1 to (∗∗) gives us theequivalently clause:

ga-tp(g−1(a)/M ′,C) does notµ-split over N.

Sinceg � M = idM , we have that

ga-tp(g(a)/M) = ga-tp(g−1(a)/M) = ga-tp(a/M). �

Not only do non-splitting extensions exist, but they are unique:
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Theorem I.4.12 (Uniqueness of Non-splitting Extensions). Let N,M,M ′ ∈ Kam
µ be such that M ′ is universal over

M and M is universal over N. If p ∈ ga-S(M) does not µ-split over N, then there is a unique p′ ∈ ga-S(M ′) such
that p′ extends p and p′ does not µ-split over N.

Proof. By Theorem I.4.10, thereexists p′ ∈ ga-S(M ′) extending p suchthat p′ does notµ-split over N . Suppose for
the sake of contradiction that there existsq ′ �= p′ ∈ ga-S(M ′) extending p suchthatq ′ does notµ-split over N . Let
a, b be such thatp′ = ga-tp(a/M ′) andq ′ = ga-tp(b/M ′). SinceM is universal over N , there exists a≺K-mapping
f : M ′ → M with f � N = idN . Sincep′ andq ′ do notµ-split over N we have

ga-tp(a/ f (M ′)) = ga-tp( f (a)/ f (M ′)) and (∗)a

ga-tp(b/ f (M ′)) = ga-tp( f (b)/ f (M ′)). (∗)b
On the otherhand, sincep′ �= q ′, we have that

ga-tp( f (a)/ f (M ′)) �= ga-tp( f (b)/ f (M ′)). (∗)
Combining(∗)a , (∗)b and(∗), we get

ga-tp(a/ f (M ′)) �= ga-tp(b/ f (M ′)).

Since f (M ′) ≺K M, this inequality witnesses that

ga-tp(a/M) �= ga-tp(b/M),

contradicting our choice ofp′ andq ′ both extendingp. �

Remark I.4.13. Notice that the following follows from the existence and uniqueness ofnon-splitting extensions:
Let N,M,M ′ ∈ Kam

µ with M universal over N and M ≺K M ′. If p ∈ ga-S(M) does notµ-split over N and is
non-algebraic, then anyq ∈ ga-S(M ′) which extendsp and does notµ-split over N is also non-algebraic.

The following is a corollary of the existence and uniqueness for non-splitting types. It allows us to extend an
increasing chain of non-splitting types. Recall that in an AEC, a typep extending an increasing chain of types
〈pi | i < θ〉 does not always exist and may not even be unique when it does exist (see [2]).

Corollary I.4.14. Suppose that 〈Mi ∈ Kam
µ | i < θ〉 is a ≺K-increasing chain of models and 〈pi ∈ ga-S(Mi ) | i < θ〉

is an increasing chain of types such that for every i < θ , pi does not µ-split over M0 and M1 is universal over M0. If
M = ⋃

i<θ Mi is an amalgamation base, then there exists p ∈ ga-S(M) such that for each i < θ pi ⊂ p. Moreover,
p does not µ-split over M0.

Proof. Suppose thatM is an amalgamation base. ByTheorem I.4.10, there isp ∈ ga-S(M) extending p1 suchthat p
does notµ-split over M0. By Theorem I.4.12, we have that for everyi < θ , pi = p � Mi . �

5. Towers

While Theorem I.4.10allows us to find extensions of anon-splitting Galois type in any AEC,Sections 7and10are
dedicated to the difficult task of finding non-splitting extensions ofα-many types simultaneously under categoricity.
The mechanics used to do this include towers.

Shelah introduced chains of towers in [20] and [23] as atool to build a model of cardinalityµ++ from models
of cardinalityµ. Towers are also used in [3] to handle abstract classes which satisfyAxioms 1–4of AECs, but
for which the union axiom,Axiom 5, is not assumed. A particular example of such classes is the class of Banach
spaces.

We follow the notation introduced in [33]. In [33] several other towers were defined. The superscriptc in the
ordering<c

µ,α and the superscripts+ and∗ in the class+K∗
µ,α serve as parameters in their paper to distinguish

various definitions. In this paper, we will refer to only the towers in+K∗
µ,α ordered by<c

µ,α .
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Definition I.5.1.

+ K∗
µ,α :=



(M̄, ā, N̄ )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M̄ = 〈Mi ∈ Kµ | i < α〉 is ≺K -increasing;
Mi is a(µ, θi )-limit model for someθi < µ+;
ai ∈ Mi+1\Mi for i + 1< α;
N̄ = 〈Ni ∈ Kµ | i + 1< α〉
Ni is a(µ, σi )-limit model for someσi < µ+;
for everyi + 1< α, Ni ≺K Mi ;
Mi is universal over Ni and
ga-tp(ai/Mi ,Mi+1) does notµ-split over Ni .




.

Remark I.5.2. The sequenceM̄ is not necessarily continuous. The sequenceN̄ may not be≺K-increasing or
continuous.

Notation I.5.3. We will use the termcontinuous tower to refer to towers of the form(M̄, ā, N̄ ) with M̄ a continuous
sequence. If(M̄, ā, N̄ ) ∈ +K∗

µ,α, we saythat
⋃

i<α Mi is thetop of the tower and that(M̄, ā, N̄ ) haslength α.

Notation I.5.4. For θ a limit ordinal< µ+, we write +Kθµ,α for the collection of all towers(M̄, ā, N̄ ) ∈ +K∗
µ,α

where eachMi is a(µ, θ)-limit model.

Our goal is to simultaneously extend theα non-splitting Galois types,{ga-tp(ai/Mi ,Mi+1) | i + 1 < α}. The
following ordering on towers captures this.

Definition I.5.5. For (M̄, ā, N̄ ) and(M̄ ′, ā′, N̄ ′) ∈ +K∗
µ,α , we say

(M̄, ā, N̄ ) ≤c
µ,α (M̄

′, ā′, N̄ ′) iff

(1) for i < α eitherM ′
i = Mi or M ′

i is universal overMi ,
(2) ā = ā′ and
(3) N̄ = N̄ ′.
We say(M̄, ā, N̄ ) <c

µ,α (M̄
′, ā′, N̄ ′) iff (M̄, ā, N̄ ) ≤c

µ,α (M̄
′, ā′, N̄ ′) andM ′

i �= Mi for everyi < α.

Remark I.5.6. Notice that in Definition I.5.5, if (M̄, ā, N̄ ) <c
µ,α (M̄ ′, ā, N̄ ), then for every i < α,

ga-tp(ai/M ′
i ,M ′

i+1) does notµ-split over Ni .

Notation I.5.7. We will often be looking at extensions of an initial segment of a tower. We introduce the following
notation for this. Suppose(M̄, ā, N̄ ) ∈ +K∗

µ,α . Let β < α. We write M̄ � β for the sequence〈Mi | i < β〉.
Similarly, ā � β = 〈ai | i + 1 < β〉 and N̄ � β = 〈Ni | i + 1 < β〉. Then(M̄, ā, N̄ ) � β will represent the tower
(M̄ � β, ā � β, N̄ � β) ∈ +K∗

µ,β . If (M̄ ′, ā′, N̄ ′) is a<c
µ,β -extension of(M̄, ā, N̄ ) � β, we refer to it as apartial

extension of (M̄, ā, N̄ ).

The requirement thatM ′
i is universal overMi in the definition of<c

µ,α allows us to conclude that the models in the
union of a<c

µ,α-increasing chain of towers are limit models. In particular, the union of a<c
µ,α-increasing chain (of

length< µ+) of towers is a tower.

Definition I.5.8. We say thatK satisfies the<c
µ,α-extension property iff every tower in+K∗

µ,α has a<c
µ,α-extension.

The<c
µ,α-extension property serves as a weak substitute for theextension property of non-forking in first-order

model theory, but is much stronger than the extension property for non-splitting. Notice that for towers withα = 1,
Theorem I.4.10and the existence of universal extensions (Fact I.2.5) give the<c

µ,1 extension property. Actually it is
possible to derive the<c

µ,n-extension property for alln ≤ ω with no more than the existence of universal extensions
and the extension property for non-splitting types.

It is open whether or not everyK satisfyingAssumption 0.7has the<c
µ,α-extension property forα > ω. The

difficulties concern discontinuous towers. Notice that if(M̄, ā, N̄ ) is not continuous, then for some limit ordinal
i < α, we may have that

⋃
j<i M j is not an amalgamation base. Suppose that we have constructed a partial extension

of (M̄, ā, N̄ ) up to i . It may be thecase that this extension andMi may not be amalgamated over
⋃

j<i M j . This
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would rule out much hope for using the partial extension as a base for a longer extension of the entire tower(M̄, ā, N̄ ).
With this in mind, it is natural to restrict ourselves to continuous towers. However, it is not easy to prove that every
continuous tower has a continuous extension. In fact, we can only prove this under an extra assumption, Hypothesis 1
(seeSection 7).

In addition to the continuous towers, we have identified two subclasses of+K∗
µ,α , amalgamable and nice towers,

for which a<c
µ,α-extension property can be proven.

Definition I.5.9. We say that(M̄, ā, N̄ ) ∈ +K∗
µ,α is nice iff wheneveri < α is a limit ordinal,

⋃
j<i M j is an

amalgamation base.

Remark I.5.10. Since everyMi is a (µ, θi )-limit for some limit ordinalθi < µ+, by Theorem I.3.13, we have that
everyMi is also an amalgamation base. Sonice only is a requirement for limit ordinalsi whereM̄ is not continuous
at i . Thus, if(M̄, ā, N̄ ) is a continuous tower, then(M̄, ā, N̄ ) is nice.

Notice that the definition of nice does not require that the top of the tower
(⋃

i<α Mi
)

be an amalgamation base.
For these towers we introduce the terminology:

Definition I.5.11. We say that(M̄, ā, N̄ ) ∈ +K∗
µ,α is amalgamable iff it is nice and

⋃
i<α Mi is an amalgamation

base.

We use the word amalgamable to refer to such towers, because any two<c
µ,α-extensions of an amalgamable tower

(M̄, ā, N̄ ) can be amalgamated over
⋃

i<α Mi .
Notice that the classes of amalgamable and nice towers both avoid the problematic towers described above. Namely,

if (M̄, ā, N̄ ) is discontinuous ati , we require that
⋃

j<i M j is an amalgamation base. We can show that every nice
tower has an amalgamable extension (Theorem III.10.1). In particular, every continuous tower has an amalgamable
extension. However, this amalgamable extension may not be continuous. Furthermore, if we instead restrict ourselves
to amalgamable towers, we will run into the difficulty that the union of a<c

µ,α-increasing chain of amalgamable towers
need not be amalgamable (or even nice). But, with a littlehelp from Hypothesis 1, we are able to carry through the
strategy of restricting ourselves to continuous towers. By carefully stacking the amalgamable extensions inSection 7,
we construct continuous extensions of continuous towers.

Notation I.5.12. Ultimately, we will be constructing a<c
µ,α-extension,(M̄ ′, ā′, N̄ ′) of a tower(M̄, ā, N̄ ), but we

will allow the extension to live on a larger index set,(M̄ ′, ā′, N̄ ′) ∈ +K∗
µ,α′ for someα′ > α. We will also like to

arrange the construction so thatα is not identified with an initial segment ofα′, but as someother scattered, increasing
subsequence ofα′. Therefore, we will prefer to consider the relative structure of these index sets in addition to their
order types. We make the following convention that will be justified in later constructions. Whenα andδ are ordinals,
α × δ with the lexicographical ordering (<lex), is well ordered. Recall that otp(α × δ,<lex) = δ · α where· is ordinal
multiplication. For easier notation in future constructions, we will identifyα× δ with the interval of ordinals[0, δ ·α)
and +K∗

µ,α×δ will refer to the collection of towers+K∗
µ,δ·α. Thenotation will be more convenient when we compare

towers in +K∗
µ,α×δ with those in+K∗

µ,α′×δ′ for α′ ≥ α andδ′ ≥ δ.

We will make use of the following proposition concerning<c
µ,α throughout the paper.

Proposition I.5.13. If (M̄ ′, ā, N̄ ) is a <c
µ,α-extension of (M̄, ā, N̄ ), then for every i ≤ j < α, we have that M ′

j is
universal over Mi .

Proof. By definition of<c
µ,α , we have thatM ′

i is universal overMi . SinceM̄ ′ is increasing,M ′
i �K M ′

j . So M ′
j is

universal overMi as well. �

Part II. Uniqueness of limit models

We will use towers to prove the uniqueness of limit models by producing a model which is simultaneously a
(µ, θ1)-limit model and a(µ, θ2)-limit model. The construction of such a model is sufficient to prove the uniqueness
of limit models byFact I.2.11and involves building an increasing and continuous chain of towers.
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The idea is to build a two-dimensional array (with the cofinality of the height= θ1 and the cofinality of the width
= θ2) of models such that the bottom corner of the array (M∗) is a(µ, θ1)-limit model witnessed by the last column
and a(µ, θ2)-limit model witnessed by the last row of the array. The actual construction involves increasing the length
of the towers as we go from one row to the next.

The construction of this array is done by identifyingeach row of the array with a tower and then building a<c
µ,α-

increasing and continuous chain of towers (whereα will vary throughout our construction).

� θ2 ��

�

θ1

��

Mδ0+1
0,0

≺K

id
��

⋃
β<θ2

Mδ0+1
(β,µδ0)

= Mδ0+1
θ2,0

id ��													

													

M
δζ+1
0,0

≺K

id
��

⋃
β<θ2

M
δζ+1
(β,µδζ )

= Mδ0+1
θ2,0

id 	




























M
δζ+1+1
0,0

≺K

id

��

⋃
β<θ2

M
δζ+1+1
(β,µδζ+1)

id
��⋃

ζ<θ1

⋃
β<θ2

M
δθ1
β,δθζ

M
δθ1
0,0

≺K
⋃

i<µδθ1
M
δθ1
(β,i)

≺K
⋃

i<µδθ1
M
δθ1
(β+1,i)

≺K
⋃
β<θ2

⋃
i<µδθ1

M
δθ1
(β,i)

M∗

In order to witness thatM∗ is a(µ, θ1)-limit model, we will need for our towers to beincreasing in such a way that
the models in theδ + 1st tower are universal over the models in theδth tower. This is possible if we can prove that
every continuous tower has a continuous<c

µ,α-extension. This is the subject ofSection 7and related material appears
in Section 10.

While M∗ is built up by a chain of cofinalityθ2, it may not be a(µ, θ2)-limit model. In order to conclude that
M∗ is a(µ, θ2)-limit model, we show inSection 6, that the top of a continuous, relatively full tower of lengthθ2 is a
(µ, θ2)-limit model. We will construct the relatively full tower by requiring that at every stage of our construction of
the array, we realize all the strong types over the previous tower in a systematic way.Section 8provides the technical
machinery to carry this through. The actual construction ofM∗ is carried out inSection 9.

6. Relatively full towers

We begin this section by recalling the definition ofstrong types from [33].

Definition II.6.1 (Definition 3.2.1 of [33]). For M a (µ, θ)-limit model,

(1) Let

St(M) :=



(p, N)

∣∣∣∣∣∣∣∣∣

N ≺K M;
N is a(µ, θ)− limit model;
M is universal over N;
p ∈ ga-S(M) is non-algebraic;
and p does notµ− split overN.




.
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(2) For types(pl, Nl ) ∈ St(M) (l = 1,2), we say(p1, N1) ∼ (p2, N2) iff for every M ′ ∈ Kam
µ extendingM there is

a q ∈ ga-S(M ′) extending bothp1 and p2 suchthatq does notµ-split over N1 andq does notµ-split over N2.

Notation II.6.2. SupposeM ≺K M ′ are amalgamation bases of cardinalityµ. For(p, N) ∈ St(M ′), if M is universal
over N , we define the restriction(p, N) � M ∈ St(M ′) to be(p � M, N).

We write (p, N) � M only whenp does notµ-split over N andM is universal over N .

Notice that∼ is an equivalence relation onSt(M). To seethat∼ is a transitive relation onSt(M), suppose that
(p1, N1) ∼ (p2, N2) and(p2, N2) ∼ (p3, N3). Let M ′ ∈ Kam

µ be an extension ofM and fixqi j ∈ ga-S(M ′) extending
both pi and p j andqi j does notµ-split over bothNi andN j (for 〈i, j〉 = 〈1,2〉, 〈2,3〉). Sincep2 has a unique non-
splitting extension toM ′ (Theorem I.4.12), we know thatq12 = q23. Thenq12 witnesses that(p1, N1) ∼ (p3, N3)

since it is an extension of bothp1 andp3 and does notµ-split over bothN1 andN3.
The following lemma is used to provide a bound on the number of strong types.

Lemma II.6.3. Given M ∈ Kam
µ , and (p, N), (p′, N ′) ∈ St(M). Let M ′ ∈ Kam

µ be a universal extension of M. To
show that (p, N) ∼ (p′, N ′) it suffices to find q ∈ ga-S(M ′) such that q extends both p and p′ and such that q does
not µ-split over N and N ′.

Proof. Supposeq ∈ ga-S(M ′) extends bothp and p′ and does notµ-split over N and N ′. Let M∗ ∈ Kam
µ be an

extension of M. By universality of M ′, thereexists f : M∗ → M ′ suchthat f � M = idM . Consider f −1(q). It
extends p and p′ and does notµ-split over N andN ′ by invariance. Thus(p, N) ∼ (p′, N ′). �

The following appears as a Fact 3.2.2(3) in [33]. We provide a proof here for completeness.

Fact II.6.4. For M ∈ Kam
µ , | St(M)/ ∼ | ≤ µ.

Proof of Fact II.6.4. Suppose for the sake of contradiction that
| St(M)/ ∼ | > µ.

Let {(pi , Ni ) ∈ St(M) | i < µ+} be pairwise non-equivalent. By Galois stability (Fact I.1.8) and the pigeon-
hole principle, there existp ∈ ga-S(M) and I ⊂ µ+ of cardinalityµ+ suchthat i ∈ I implies pi = p. Set
p := ga-tp(a/M) with a ∈ C.

Fix M ′ ∈ Kam
µ a universal extension ofM insideC. We will show that there are≥ µ+ types overM ′. This will

provide us with a contradiction sinceK is Galois stable inµ (Fact I.1.8).
For eachi ∈ I , by the extension property of non-splitting (Theorem I.4.10), there existsfi ∈ AutM (C) suchthat

· ga-tp( fi (a)/M ′) does notµ-split over Ni and
· ga-tp( fi (a)/M ′) extends ga-tp(a/M).

Claim II.6.5. For i �= j ∈ I , we have that the types, ga-tp( fi (a)/M ′) and ga-tp( f j (a)/M ′), are not equal.

Proof of Claim II.6.5. Otherwise ga-tp( fi (a)/M ′) does notµ-split over Ni and does notµ-split over N j . By
Lemma II.6.3, this implies that(p, Ni ) ∼ (p, N j ) contradicting our choice of non-∼-equivalent strong types.�

This completes the proof as{ga-tp( fi (a)/M ′) | i ∈ I } is a set ofµ+ distinct types overM ′, contradictingµ-Galois
stability. �

We can now consider towers which are saturated with respect to strong types (fromSt(M)). These towers are
called relatively full.

Definition II.6.6. Let α, δ andθ be limit ordinals< µ+. Suppose〈M̄β,i | (β, i) ∈ α × δ〉 is such that each̄Mβ,i is a

sequence of limit models,〈Mγ

β,i | γ < θ〉, with Mγ+1
β,i universal overMγ

β,i for all (β, i) ∈ α × δ.

A tower (M̄, ā, N̄ ) ∈ +Kθµ,α×δ is said to befull relative to 〈M̄γ | γ < θ〉 iff for all (β, i) ∈ α × δ

(1) M̄β,i witnesses thatMβ,i is a(µ, θ)-limit model and
(2) for all (p, N∗) ∈ St(Mβ,i ) with N∗ = Mγ

β,i for some γ < θ , there is a j <

δ suchthat(ga-tp(aβ+1, j/Mβ+1, j ), Nβ+1, j ) � Mβ,i ∼ (p, N∗).
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M0
0,0 ≺K · · · ≺K

id

��

M0
β,i ≺K . . .

id

��
Mγ

0,0 ≺K · · · ≺K

id
��

Mγ

β,i ≺K . . .

id
��

Mγ+1
0,0

≺K · · · ≺K

id

��

Mγ+1
β,i

≺K . . .

id
��

M0,0 = ⋃
γ<θ Mγ

0,0 ≺K · · · ≺K Mβ,i = ⋃
γ<θ Mγ

β,i ≺K . . .

Notation II.6.7. We say that(M̄, ā, N̄ ) ∈ Kθµ,α×δ is relatively full iff there exists〈M̄β,i | (β, i) ∈ α × δ〉 as in

Definition II.6.6suchthat(M̄, ā, N̄ ) is full relative to〈M̄β,i | (β, i) ∈ α × δ〉.
Remark II.6.8. A strengthening ofDefinition II.6.6appears in [33] under the name full towers (see Definition 3.2.3
of their paper). Consider the statement:

∀M ∈ Kam
µ and∀(p, N), (p′, N ′) ∈ St(M), (p, N) ∼ (p′, N ′) iff p = p′. (∗)

Notice that for M ∈ Kam
µ , if (p, N) ∼ (p′, N ′) ∈ St(M), then necessarilyp = p′. To see this, takeM ′ ∈ Kam

µ

some extension ofM andq ∈ ga-S(M ′) suchthatq extends bothp and p′ and does notµ-split over N andN ′. Then
q � M = p andq � M = p′. So p and p′ must be equal.

However we donot know that(∗) holds in our context. Shelah has implicitly shown, with much work, that it
does hold in categorical AECs which satisfy the amalgamation property [28]. It is a consequence of transitivity of
non-splitting.

Property(∗) implies that relatively full towers are full. We use relatively full towers since the construction of full
towers by an increasing chain of towers in this context has been seen to be problematic.

The following proposition is immediate from the definition of relative fullness.

Proposition II.6.9. Let α and δ be limit ordinals < µ+. If (M̄, ā, N̄ ) ∈ +Kθµ,α×δ is full relative to 〈M̄β,i | (β, i) ∈
α × δ〉, then for every limit ordinal β < α, we have that the restriction (M̄, ā, N̄) � β × δ is full relative to
〈M̄β ′,i ′ | (β ′, i ′) ∈ β × δ〉.

The following theorem is proved in [33] for full towers(Theorem 3.2.4 of their paper). Our strengthening provides
us with an alternative characterization of limit models as the top of a relatively full tower.

Theorem II.6.10. Let α be an ordinal < µ+ such that α = µ · α. Suppose δ < µ+. If (M̄, ā, N̄ ) ∈ +Kθµ,α×δ is full

relative to 〈M̄β,i | (β, i) ∈ α × δ〉 and M̄ is continuous, then M := ⋃
i<α·δ Mi is a (µ, cf(α))-limit model over M0.

Proof. Let M ′ ≺K C be a(µ, α)-limit over M0,0 witnessed by〈M ′
i | i < α〉. By Weak Disjoint Amalgamation and

renaming elements, we can arrange that
⋃

i<α M ′
i ∩⋃i<α·δ Mi = M0,0 and that for eachi < α we can identify the

universe ofM ′
i with µ(1 + i). Notice that sinceα = µ · α, we have thati ∈ M ′

i+1 for everyi < α. We will construct
an isomorphism fromM into M ′.

Now we define by induction oni < α a increasing and continuous sequence of≺K-mappings〈hi | i < α〉 such
that

(1) hi : Mi, j → M ′
i+1 for somej < δ

(2) h0 = idM0,0 and
(3) i ∈ rg(hi+1).
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For i = 0 take h0 = idM0,0. For i a limit ordinal let ȟi = ⋃
i ′<i hi ′ . Since M̄ is continuous, we know

that
⋃

i′<i
j<δ

Mi ′ , j is an amalgamation base. Thus the induction hypothesis gives us thathi is a ≺K-mapping from

Mi,0 = ⋃
i′<i
j<δ

Mi ′ , j into M ′
i allowing us to satisfy condition (1) of the construction.

Suppose thathi has been defined. Letj < δ be such thathi : Mi, j → M ′
i+1. There are twocases: eitheri ∈ rg(hi )

or i /∈ rg(hi ). First suppose thati ∈ rg(hi ). SinceM ′
i+2 is universal overM ′

i+1, it is also universal overhi (Mi, j ). This
allows us to extendhi to hi+1 : Mi+1,0 → M ′

i+2.
Now consider the case wheni /∈ rg(hi ). We illustrate the construction for this case:

i

∈

��

f̌i


�

M ′
0

...
id �� M ′

i
id �� M ′

i+1
id �� M ′

i+2
f̌i




M̌ fi (i) = fa(h′(ai+1, j ′))

M0,0≺K

idh0

��

Mi,0 ≺K Mi, j

hi

��

≺KMi+1,0 ≺KMi+1, j ′
f̌a◦h′

��hi+1 f̌ −1
i ◦ f̌a◦h′

��

ai+1, j ′

∈
��

f̌a◦h′

��

Since〈Mγ
i, j | γ < θ〉 witness thatMi, j is a (µ, θ)-limit model, by Fact I.4.7, thereexists γ < θ suchthat

ga-tp(i/Mi, j ) does notµ-split over Mγ
i, j . By our choice ofM̄ ′ disjoint fromM̄ outside ofM0, weknow thati /∈ Mi, j .

Thus ga-tp(i/Mi, j ) is non-algebraic and by relative fullness of(M̄, ā, N̄ ), thereexists j ′ < δ suchthat

(ga-tp(i/Mi, j ),Mγ

i, j ) ∼ (ga-tp(ai+1, j ′/Mi+1, j ′ ), Ni+1, j ′ ) � Mi, j .

In particular we have that

ga-tp(ai+1, j ′/Mi, j ) = ga-tp(i/Mi, j ). (∗)
We can extendhi to an automorphismh′ of C. An application ofh′ to (∗) gives us

ga-tp(h′(ai+1, j ′)/hi (Mi, j )) = ga-tp(i/hi (Mi, j )). (∗∗)
By (∗∗), there existM∗ ∈ Kam

µ aK-substructure ofC containingMi, j and≺K-mappingsfa : h′(Mi+1, j ′+1) →
M∗ and fi : M ′

i+2 → M∗ suchthat fa(h′(ai+1, j ′)) = fi (i) and fa � hi (Mi, j ) = fi � hi (Mi, j ) = idhi (Mi, j ). Since
M ′

i+2 is universal over M ′
i+1, it is also universal overhi (Mi, j ). So we may assume thatM∗ = M ′

i+2. SinceC is a

(µ,µ+)-limit model, we can extendfa and fi to automorphisms ofC, say f̌a and f̌i . Let hi+1 : Mi+1, j ′+1 → M ′
i+2

be defined ašf −1
i ◦ f̌a ◦ h′. Notice thathi+1(ai+1, j ′) = i . This completes the construction.

Let h := ⋃
i<α hi . Clearly h : M → M ′. To seethat h is an isomorphism, notice that condition (3) of the

construction forcesh to be surjective. �

Remark II.6.11. Theorem II.6.10can be improved by replacing the assumption of continuity of(M̄, ā, N̄ ) with
niceness. The same proof works with a minor adjustment at thelimit stage. We lift the requirement that〈hi | i < α〉
is continuous and use the fact thatM ′

i+1 is universal overM ′
i to carry out the construction at limits.

7. Existence of continuous <c
µ,α-extensions

Our proof of the uniqueness of limit models will involve a<c
µ,α-increasing chain of continuous towers such that

the index sets of the towers grow throughout the chain. The purpose of this section and ofSection 8is to develop the
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machinery that will allow us to construct such a chain of continuous towers while refining the index sets along the
way. While we will only use the fact that every continuous tower has a continuous extension, we prove the stronger
statement to fuel the induction ofTheorem II.7.1.

The claim that every continuous tower has a continuous extension still alludes a full solution. Hypothesis 1 is
sufficient to derive the extension property. It is an open problem if this hypothesis can be removed.

Hypothesis 1: Every continuous tower of lengthα insideC has an amalgamable<c
µ,α-extension insideC.

Theorem II.7.1 (Existence of Continuous Extensions). Let (M̄, ā, N̄ ) be a nice tower of length α in C. Under
Hypothesis 1, there exists a continuous, amalgamable tower (M̄∗, ā, N̄ ) inside C such that (M̄, ā, N̄ ) <c

µ,α

(M̄∗, ā, N̄ ).
Furthermore, if (M̄ ′, ā, N̄ ) ∈ +K∗

µ,β is a continuous partial extension of (M̄, ā, N̄ ), then there exist a ≺K-mapping

f and a continuous tower (M̄∗, ā, N̄ ) extending (M̄, ā, N̄ ) so that f (M ′
i ) �K M∗

i for all i < β.

M0

id
��

≺K

id





Mi

id
��

≺K

id

��

⋃
i<β Mi

id
��

≺K

id

��

Mβ

id

��

≺K
⋃

i<α Mi

id

��

M ′
0 ≺K

f

��

M ′
i ≺K

f

��

⋃
i<β M ′

i

f
��

M∗
0 ≺K M∗

i ≺K
⋃

i<β M∗
i ≺K M∗

β ≺K
⋃

i<α M∗
i

The proof ofTheorem II.7.1is by induction onα. Notice that for α ≤ ω, there is little to do since all towers
of length≤ ω are vacuously continuous. Ifα is the successor of a successor, then the induction hypothesis and the
extension property for non-µ-splitting types (Theorem I.4.10) produce a continuous extension. We take care of the
case thatα is a limit ordinal by taking direct limits of partial continuous extensions. The difficult case is whenα is the
successor of a limit ordinal. This case employs Hypothesis 1. We will build an increasing chain of continuous towers
throwing in a particular element at each stage so that in the end we will have added enough (µ-many, predetermined)
elements to have a universal extension over

⋃
i<δ Mi . The following proposition allows us to add in the new elements

in this stage of the inductive proof ofTheorem II.7.1(whenα = δ + 1 andδ is a limit ordinal).

Proposition II.7.2. Suppose that Theorem II.7.1 holds for all amalgamable towers of length δ for some limit ordinal
δ < µ+. Let (M̄, ā, N̄ ) be an amalgamable tower of length δ inside C. For every b ∈ C, there exists a continuous,
amalgamable tower (M̄∗, ā, N̄ ) ∈ +K∗

µ,δ inside C such that b ∈ ⋃i<δ M∗
i and (M̄, ā, N̄ ) <c

µ,δ (M̄
∗, ā, N̄ ).

Furthermore, if (M̄ ′, ā, N̄ ) ∈ +K∗
µ,β is a continuous partial extension of (M̄, ā, N̄ ), we can choose (M̄∗, ā, N̄ )

such that there exists a ≺K-mapping f with f (M ′
i ) �K M∗

i for all i < β.

Proof. We begin by defining by induction onζ < δ a <c
µ,δ-increasing and continuous sequence of towers,

〈(M̄, ā, N̄ )ζ ∈ +K∗
µ,δ | ζ ≤ δ〉 suchthat

(1) (M̄, ā, N̄ ) ≤c
µ,δ (M̄, ā, N̄ )0,

(2) (M̄, ā, N̄ )ζ is continuous and
(3) if we are given(M̄ ′, ā, N̄ ) ∈ +K∗

µ,β a continuous partial extension of(M̄, ā, N̄ ), then there is a≺K-mapping f

with f (M ′
i ) �K M0

i for all i < β.

This produces aδ-by-(δ + 1)-array of models which we will diagonalize.
Why is this construction possible? Since(M̄, ā, N̄ ) is amalgamable, by thehypothesis of the proposition,

(M̄, ā, N̄ ) � δ has a continuous extension(M̄0, ā, N̄ ) ∈ +K∗
µ,δ. Furthermore, if we are given(M̄ ′, ā, N̄ ) ∈ +K∗

µ,β as

above, then by condition(2) of Theorem II.7.1, we may find f suchthat f (M ′
i ) �K M0

i for all i < β. At successor
stages we can find continuous extensions by the hypothesis of the proposition and the fact that continuous towers are
nice. Whenζ is a limit ordinal, we take unions. The unions will be continuous, since the union of an increasing chain
of continuous towers is continuous.
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Since
⋃

i<δ Mi is an amalgamation base, we can find an isomorphic copy of this chain of towers insideC. WLOG,
for ζ < δ, Mδ

ζ ≺K C.

Consider the diagonal sequence〈Mζ
ζ | ζ < δ〉. Notice that this is a≺K-increasing sequence of amalgamation

bases. Forζ < δ, we haveMζ+1
ζ+1 is universal overMζ

ζ . Why?From the definition of<c, Mζ+1
ζ is universal overMζ

ζ .

SinceMζ+1
ζ ≺K Mζ+1

ζ+1 , we have thatMζ+1
ζ+1 is alsouniversal overMζ

ζ (seeProposition I.5.13).

By construction, eachM̄ζ is continuous. Thus the sequence〈Mζ
ζ | ζ < δ〉 is continuous. Then〈Mζ

ζ | ζ < δ〉
witnesses that

⋃
ζ<δ Mζ

ζ is a (µ, δ)-limit model. Let Mb be alimit model insideC that is universalover
⋃
ζ<δ Mζ

ζ

and containsb.
Because

⋃
ζ<δ Mζ

ζ is a limit model, we can applyFact I.4.7to ga-tp
(

b/
⋃
ζ<δ Mζ

ζ ,Mδ
δ

)
. Let ξ < δ be such that

ga-tp

(
b

/⋃
ζ<δ

Mζ
ζ ,Mb

)
does notµ-split over Mξ

ξ . (∗)

Notice that(〈Mi
i | i < ξ〉, ā, N̄ ) � ξ is a<c

µ,ξ -extension of(M̄, ā, N̄ ) � ξ .

We will find a <c
µ,δ-extension of(M̄, ā, N̄ ) by defining a≺K-increasing chain of models〈N∗

i | i < α〉 and an
increasing chain of≺K-mappings〈hi | i < α〉 with the intention that the pre-image ofN∗

i under an extension of⋃
i<α hi will form a sequenceM̄∗ suchthat (M̄, ā, N̄) <c

µ,δ (M̄
∗, ā, N̄ ), b ∈ M∗

ξ+1 and M∗
i = Mi

i for all i < ξ .
We choose by induction oni < δ a ≺K-increasing and continuous chain of limit models〈N∗

i ∈ Kµ | i < δ〉 and an
increasing and continuous sequence of≺K-mappings〈hi | i < δ〉 satisfying

(1) N∗
i+1 is a limit model and is universal overN∗

i

(2) hi : Mi
i → N∗

i

(3) hi (Mi
i ) ≺K Mi+1

i
(4) ga-tp(hi+1(ai/N∗

i ) does notµ-split over hi (Ni )

(5) Mb ≺K N∗
ξ+1 and

(6) for i ≤ ξ , N∗
i = Mi

i with hi = idMi
i
.

We depict the construction below. The inverse image of the sequence ofN∗’s will form the required continuous
<c
µ,δ-extension of(M̄, ā, N̄ ).

C b

∈

M0
0

h0 id

��

≺K Mξ
ξ

hid
ξ

��

≺K Mξ+1
ξ+1

hξ+1

��

≺K Mξ+2
ξ+2

hξ+2

��

≺K
⋃
ζ<δ Mζ

ζ

hξ+1

��

≺KMδ
δ

id

�� 































































N∗
0 id

�� N∗
ξ id

�� N∗
ξ+1 id

�� N∗
ξ+2 id

��
⋃
ζ<δ N∗

ζ

h1(a0)

∈

hξ+1(aξ )

∈

hξ+2(aξ+1)

∈



134 M. VanDieren / Annals of Pure and Applied Logic 141 (2006) 108–147

The requirements determine the definition ofN∗
i for i ≤ ξ . We proceed with the rest of the construction by

induction oni . If i is a limit ordinal≥ ξ , let N∗
i = ⋃

j<i N∗
j andhi = ⋃

j<i h j .
Suppose that we have definedhi and N∗

i satisfying the conditions of the construction. We now describe how to
defineN∗

i+1. First, we extendhi to h̄i ∈ Aut(C). We can assume that̄hi (ai ) ∈ Mi+2
i+1 . This is possible sinceMi+2

i+1 is
universal overhi (Mi

i ) by construction.
Since ga-tp(ai/Mi

i ) does notµ-split over Ni , by invariance we have that ga-tp(h̄i (ai )/hi (Mi
i )) does notµ-split

overhi (Ni ). We now adjust the proof of the existenceproperty for non-splitting extensions.

Claim II.7.3. We can find g ∈ Aut(C) such that ga-tp(g(h̄i (ai ))/N∗
i ) does not µ-split over hi (Ni ) and

g(h̄i (M
i+1
i+1 )) ≺K Mi+2

i+1 .

Proof of Claim II.7.3. First we find a≺K-mapping f suchthat f : N∗
i → hi (Mi

i ) suchthat f � hi (Ni ) = idhi (Ni )

which is possible sincehi (Mi
i ) is universal over hi (Ni ). Notice that ga-tp( f −1(h̄i (ai ))/N∗

i ) does notµ-split over
hi (Ni ) and

ga-tp( f −1(h̄i (ai ))/hi (M
i
i )) = ga-tp(h̄i (ai )/hi (M

i
i )) (+)

by a non-splitting argument as in the proof ofTheorem I.4.12.
Let N+ be a limit model of cardinalityµ containing f −1(h̄i (ai )) with f −1(h̄i (M

i+1
i+1 )) ≺K N+. Now using

the equality of types(+) and the fact thatMi+2
i+1 is universal overhi (Mi

i ) with h̄i (ai ) ∈ Mi+2
i+1 , we can find a

≺K-mapping f + : N+ → Mi+2
i+1 suchthat f + � hi (Mi

i ) = idhi (Mi
i )

and f +( f −1(h̄i (ai ))) = h̄i (ai ). Now set

g := f + ◦ f −1 : h̄(Mi+1
i+1 ) → Mi+2

i+1 . �

Fix such ag as in the claim and sethi+1 := g◦ h̄i � Mi+1
i+1 . Let N∗

i+1 be a≺K extension of N∗
i , Mb andhi+1(M

i+1
i+1 )

of cardinalityµ insideC. ChooseN∗
i+1 to additionally be a limitmodel and universal overN∗

i .
This completes the construction.
Wenow argue that the construction of these sequences is enough to find a<c

µ,δ-extension,(M̄∗, ā, N̄ ), of (M̄, ā, N̄ )
suchthatb ∈ M∗

ζ for someζ < δ.
Let hδ := ⋃

i<δ hi . We will be defining fori < δ, M∗
i to bepre-image ofN∗

i under some extension ofhδ. The
following claim allows us to choose the pre-image so thatM∗

ζ containsb for someζ < δ.

Claim II.7.4. There exists h ∈ Aut(C) extending
⋃

i<δ hi such that h(b) = b.

Proof of Claim II.7.4. Let hδ := ⋃
i<δ hi . Consider the increasing and continuous sequence〈hδ(Mi

i ) | i < δ〉. By
invariance,hδ(M

i+1
i+1) is universal overhδ(Mi

i ) and eachhδ(Mi
i ) is a limit model.

Furthermore, from our choice ofξ , we know that ga-tp(b/Mδ
i ) does notµ-split over Mξ

ξ . Sincehi (Mi
i ) ≺K

Mi+1
i ≺K

⋃
j<δ Mδ

j , monotonicity of non-splitting allows us to conclude that

ga-tp(b/hδ(M
i
i )) does notµ-split over Mξ

ξ .

This allows us to applyFact I.4.8, to ga-tp
(
b/
⋃

i<δ hδ(Mi
i )
)

yielding

ga-tp

(
b

/⋃
i<δ

hδ(M
i
i )

)
does notµ-split over Mξ

ξ . (∗∗)

Notice that
⋃

i<δ Mi
i is a limit model witnessed by〈M j

j | j < δ〉. So wecan applyCorollary I.2.20and extend⋃
i<δ hi to an automorphismh∗ of C. We will first show that

ga-tp

(
b

/
h∗
(⋃

i<δ

Mi
i

)
,C

)
= ga-tp

(
h∗(b)

/
h∗
(⋃

i<δ

Mi
i

)
,C

)
. (∗ ∗ ∗)
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By invariance and our choice ofξ in (∗),

ga-tp

(
h∗(b)

/
h∗
(⋃

i<δ

Mi
i

)
,C

)
does notµ-split over Mξ

ξ .

We will use non-splitting to derive(∗ ∗ ∗). To make the application of non-splitting more transparent, let
N1 := ⋃

i<δ Mi
i , N2 := h∗ (⋃

i<δ Mi
i

)
and p := ga-tp(b/N2). By (∗∗), we have thatp � N2 = h∗(p � N1).

In other words,

ga-tp

(
b

/
h∗
(⋃

i<δ

Mi
i

)
,C

)
= ga-tp

(
h∗(b)

/
h∗
(⋃

i<δ

Mi
i

)
,C

)
,

as desired.
From (∗ ∗ ∗) and Corollary I.2.25, we can find an automorphism f of C such that f (h∗(b)) = b and f �

h∗ (⋃
i<δ Mi

i

) = idh∗(⋃
i<δ Mi

i

). Notice thath := f ◦ h∗ satisfies the conditions of the claim.�

Now that we have an automorphismh fixing b and
⋃

i<δ Mi , we can define for eachi < δ, M∗
i := h−1(N∗

i ).

Claim II.7.5. (M̄∗, ā, N̄ ) is a <c
µ,δ-extension of (M̄, ā, N̄ ) such that b ∈ M∗

ξ+1.

Proof of Claim II.7.5. By constructionb ∈ Mδ
δ ⊆ N∗

ξ+1. Sinceh(b) = b, this implies b ∈ M∗
ξ+1. To verify that we

have a≤c
µ,δ-extension we need to show fori < δ:

i. M∗
i is universal overMi

ii. ai ∈ M∗
i+1\Mi for i + 1< δ and

iii. ga-tp(ai/M∗
i ) does notµ-split over Ni wheneveri, i + 1 ≤ δ.

Item i follows from the fact thatMi
i is universal over Mi andMi

i ≺K M∗
i . Item iii follows from invariance and our

construction of theN∗
i ’s. Finally, recalling that a non-splitting extension of a non-algebraic type is also non-algebraic

(RemarkI.4.13) we see that Item iii impliesai /∈ M∗
i . By our choice ofhi+1(ai ) ∈ Mi+2

i+1 ≺K N∗
i+1, we have that

ai ∈ M∗
i+1. Thus Item iiis satisfied as well. � �

Before beginning the proof ofTheorem II.7.1, recall that we will be building a directed system of partial extensions
to take care of the induction step whenα is a limit ordinal. Let us establish a few facts about directed systems here.
Using the axioms ofAEC and Shelah’s Presentation Theorem, one can show thatAxiom 5 of the definition of AEC
has an alternative formulation (see [24] or Chapter 13 of [7]):

Definition II.7.6. A partially ordered set(I,≤) is directed iff for every a, b ∈ I , thereexists c ∈ I suchthata ≤ c
andb ≤ c.

Fact II.7.7 (P.M. Cohn 1965). Let (I,≤) be a directed set. If 〈Mt | t ∈ I 〉 and {ht,r | t ≤ r ∈ I } are such that

(1) for t ∈ I , Mt ∈ K
(2) for t ≤ r ∈ I , ht,r : Mt → Mr is a ≺K-embedding and
(3) for t1 ≤ t2 ≤ t3 ∈ I , ht1,t3 = ht2,t3 ◦ ht1,t2 and ht,t = idMt ,

then, whenever s = limt∈I t , there exist Ms ∈ K and ≺K-mappings {ht,s | t ∈ I } such that

ht,s : Mt → Ms ,Ms =
⋃
t<s

ht,s(Mt ) and

for t1 ≤ t2 ≤ s, ht1,s = ht2,s ◦ ht1,t2 and hs,s = idMs .

Definition II.7.8. (1) (〈Mt | t ∈ I 〉, {ht,s | t ≤ s ∈ I }) from Fact II.7.7is called adirected system.
(2) We say thatMs together with〈ht,s | t ≤ s〉 satisfying theconclusion ofFact II.7.7 is a direct limit of
(〈Mt | t < s〉, {ht,r | t ≤ r < s}).

Later we will generalize these systems by producing directed systems of towers instead of models.
Now we useProposition II.7.2to proveTheorem II.7.1.
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Proof of Theorem II.7.1. We prove that every amalgamable tower has a continuous extension by induction onα.
α = 0:α = 0:α = 0: By Theorem I.3.13andCorollary I.3.14, wecan find a(µ, ω)-limit over M0. Fix sucha model and call itM ′

0.
α = δ + 1α = δ + 1α = δ + 1 and δδδ is a limit ordinal: The strategy is to start out with a continuous extension of(M̄, ā, N̄ ) � δ (which
we call (M̄∗∗, ā � δ, N̄ � δ).) If we are lucky, the top of(M̄∗∗, ā � δ, N̄ � δ) will be universal over Mδ . Sincethis
cannot be guaranteed, we will repeatedly add new elements into extensions of(M̄∗∗, ā � δ, N̄ � δ) until the top of one
of these extensions is universal overMδ .

By the induction hypothesis, we can find(M̄∗∗, ā � δ, N̄ � δ) ∈ +K∗
µ,δ suchthat

· (M̄∗∗, ā � δ, N̄ � δ) is a<c
µ,δ-extension of(M̄, ā, N̄ ) � δ and

· and if (M̄ ′, ā � β, N̄ � β) is a continuous<c
µ,β -extension of(M̄, ā, N̄ ), then we can choosēM∗∗ such that there

exists a≺K-mapping f with f (M ′
i ) ≺K M∗∗

i for all i < β.

Notice that since(M̄∗∗, ā � δ, N̄ � δ) is continuous, we can apply the induction hypothesisδ-many timesto find an
<c
µ,δ-increasing chain of continuous towers of lengthδ. In addition to being continuous, the top of this chain will be

an amalgamable extension of(M̄, ā, N̄ ) � δ. Why? The top of thistower will be a(µ, δ)-limit model witnessed by
the diagonal. Thus WLOG we may assume that(M̄∗∗, ā � δ, N̄ � δ) is amalgamable and continuous.

We construct a continuous<c
µ,δ-extension of(M̄, ā, N̄ ) by the induction hypothesis and repeated applications of

Proposition II.7.2.
Let M ′

δ be a limit model and universal overMδ insideC. EnumerateM ′
δ as{bζ | ζ < δµ}. We will add these

elements into extensions of(M̄∗∗, ā � δ, N̄ � δ) by defining by induction onζ ≤ δµ a<c
µ,δ-increasing and continuous

chain of towers(M̄, ā � δ, N̄ � δ)ζ ∈ +K*
µ,δ suchthat

(1) (M̄, ā � δ, N̄ � δ)ζ is a<c
µ,δ-extension of(M̄∗∗, ā � δ, N̄ � δ)

(2) (M̄, ā � δ, N̄ � δ)ζ is continuous and
(3) bζ ∈ ⋃i<δ Mζ+1

i ≺K C.

The following diagram depicts the construction:

C

M0

id
��

≺K Mi

id
��

≺K
⋃

i<δ Mi

id
��

id �� M ′ = ⋃
ζ<δµ bζ

id

��

M∗∗
0

id
��

≺K M∗∗
i

id
��

≺K
⋃

i<δ M∗∗
i

id
��

M0
0

id
��

≺K M0
i

id
��

≺K
⋃

i<δ M0
i � b0

id
��

Mζ+1
0

id
��

≺K Mζ+1
i

id
��

≺K
⋃

i<δ Mζ+1
i � bζ

id
��

Mδµ
0

≺K Mδµ
i

≺K
⋃

i<δ Mδµ
i

The construction is possible by the induction hypothesis andProposition II.7.2:
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ζ = 0: Since
⋃

i<δ M∗∗
i is an amalgamation base, we can applyProposition II.7.2and find a<c

µ,δ-extension

(M̄0, ā � δ, N̄ � δ) in C suchthatb0 ∈ ⋃i<δ M0
i .

ζ + 1: Suppose that(M̄, ā � δ, N̄ � δ)ζ has been defined. It is a continuous tower of lengthδ. If
⋃

i<δ Mζ
i is

an amalgamation base, by the induction hypothesis we can applyProposition II.7.2to find a<c
µ,δ-extension of

(M̄, ā � δ, N̄ � δ)ζ , say(M̄, ā � δ, N̄ � δ)ζ+1 insideC suchthatbζ ∈ ⋃i<δ Mζ+1
i .

Suppose on the other hand, that
⋃

i<δ Mζ
i is not an amalgamation base. This may occur whenζ is a limit ordinal of

a different cofinality than the cofinality ofδ. By Hypothesis 1, there is an amalgamable extension of(M̄, ā, N̄ )ζ inside
C. Apply Proposition II.7.2to the amalgamable extension andbζ . The proposition will produce a<c

µ,δ-extension of

(M̄, ā � δ, N̄ � δ)ζ , say(M̄, ā � δ, N̄ � δ)ζ+1 insideC suchthatbζ ∈ ⋃i<δ Mζ+1
i .

ζ a limit ordinal: If ζ is a limit ordinal we can set(M̄, ā � δ, N̄ � δ)ζ := ⋃
ξ<ζ (M̄, ā � δ, N̄ � δ)ξ . It is acontinuous

tower since all the(M̄, ā � δ, N̄ � δ)ξ ’s are continuous. This completes the construction.
Now consider the tower(M̄∗, ā, N̄ ) ∈ +K*

µ,δ+1 defined byM∗
i := Mδµ

i for all i < δ and M∗
δ := ⋃

i<δ Mδµ
i .

Since M∗
δ contains M ′

δ , it is universal over Mδ . Thus (M̄∗, ā, N̄ ) is a <c
µ,δ+1-extension of(M̄, ā, N̄ ). Since

(M̄δµ, ā � δ, N̄ � δ) is continuous, we have that(M̄∗, ā, N̄ ) is also continuous. Notice that(M̄∗, ā, N̄ ) is amalgamable
as well. By construction for everyi < δ, M∗

δ is a limit model. For the casei = δ, we seethat M∗
δ is a (µ, δ)-limit

model witnessed by the diagonal〈Miµ
i | i < δ〉.

α = δ + 1α = δ + 1α = δ + 1 and δδδ is a successor ordinal: By the induction hypothesis we can find a continuous, amalgamable
extension (M̄∗∗, ā � δ, N̄ � δ) of (M̄, ā, N̄ ) � δ and if we are given(M̄ ′, ā � β, N̄ � β) as in part(2) of the
statement of the theorem, we may assume that there is a≺K-mapping f ∗ suchthat f ∗(M ′

i ) ≺K M∗∗
i for all i < β.

SinceM∗∗
δ−1 and Mδ are bothK-substructures ofC, we can apply the Downward-L¨owenheim Axiom for AECs

to find M∗∗
δ (a first approximation toM∗

δ ) a model of cardinalityµ extending both M∗∗
δ−1 and Mδ . WLOG by

Theorem I.2.17andLemma I.2.24we may assume thatM∗∗
δ is a limit model of cardinalityµ andM∗∗

δ is universal
over bothM∗∗

δ−1 andMδ . By Theorem I.4.10, wecan find a≺K-mappingh : M∗∗
δ → C suchthath � Mδ = idMδ and

ga-tp(aδ/h(M∗∗
δ )) does notµ-split over Nδ . SetM∗

i := h(M∗∗
i ) for all i ≤ δ. Notice that by invariance(M̄∗, ā, N̄ ) � δ

is a<c
µ,δ-extension of(M̄, ā, N̄ ). To conclude that(M̄∗, ā, N̄ ) is the required<c

µ,α-extension of(M̄, ā, N̄ ) with
f = h ◦ f ∗ if appropriate, it remains to check that

Subclaim II.7.9. aδ /∈ M∗
δ .

Proof of Subclaim II.7.9. Suppose thataδ ∈ M∗
δ . Since Mδ is universal over Nδ , there exists a ≺K-mapping,

g : M∗
δ → Mδ suchthatg � Nδ = idNδ . Since ga-tp(aδ/M∗

δ ) does notµ-split over Nδ , we have that

ga-tp(aδ/g(M∗
δ )) = ga-tp(g(aδ)/g(M∗

δ )). (∗)
Notice that becauseg(aδ) ∈ g(M∗

δ ), (∗) implies thataδ = g(aδ). Thusaδ ∈ g(M∗
δ ) ≺K Mδ . This contradicts the

definition of towers:aδ /∈ Mδ .

ααα is a limit ordinal> ω:> ω:> ω: We will construct adirected system of partial extensions of(M̄, ā, N̄ ), 〈(M̄, ā, N̄ )ζ | ζ < α〉
and〈 fξ,ζ | ξ ≤ ζ < α〉 satisfying the following conditions:

(1) (M̄, ā, N̄ ) � ζ <c
µ,ζ (M̄, ā, N̄ )ζ

(2) (M̄, ā, N̄ )ζ is continuous
(3) (M̄, ā, N̄ )ζ lies inC
(4) fξ,ζ � Mξ

i : Mξ
i → Mζ

i for i < ξ ≤ ζ

(5) for all ξ < ζ , Mζ
ξ is universal over fξ,ζ

(⋃
i<ξ Mξ

i

)
and

(6) fξ,ζ � Mξ = idMξ for all ξ < ζ < α.

The construction is possible by the induction hypothesis andProposition II.7.2. We provide the details here.
ζ = 0: SetM̄0 equal to the empty sequence andf0,0 equal to the empty mapping.
ζ = ξ + 1: Suppose that(M̄, ā, N̄ )ξ and〈 fγ,γ ′ | γ ≤ γ ′ ≤ ξ〉 have been defined accordingly. Then by the induction
hypothesis applied to(M̄, ā, N̄ ) � ζ and the partial extension(M̄, ā, N̄ )ξ , we can find a≺K-mapping f and a
continuous extension of(M̄, ā, N̄ ) � ζ . By applying the induction hypothesis again to this continuous extension, we
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can find(M̄, ā, N̄ )ζ ∈ +K∗
µ,ζ insideC such that for all i < ξ , f (Mξ

i ) ≺K Mζ
i , f � Mi = idMi andMζ is universal

over f
(⋃

i<ξ Mξ
i

)
. Notice that by settingfγ,ξ+1 = f ◦ fγ,ξ and fζ,ζ = id⋃

ξ<ζ Mζ
ξ

we have completed the successor

stage of the construction.
ζ a limit ordinal: By the induction hypothesis we have constructed a directed system〈⋃i<γ Mγ

i | γ < ζ 〉 with
〈 fγ,ξ | γ ≤ ξ < ζ 〉. By Fact II.7.7 we can find a direct limit to this system,M∗∗

ζ ∈ K and ≺K-mappings
〈 f ∗∗
γ,ζ | γ ≤ ζ 〉. First notice that

Subclaim II.7.10. 〈 f ∗∗
γ,ζ � Mγ | γ < ζ 〉 is increasing.

Proof. Let γ < ξ < ζ be given. By construction

fγ,ξ � Mγ = idMγ .

An application of f ∗∗
ξ,ζ yields

f ∗∗
ξ,ζ ◦ fγ,ξ � Mγ = f ∗∗

γ,ζ � Mγ .

Since f ∗∗
γ,ζ and f ∗∗

ξ,ζ come from a direct limit of the system which includes the mappingfγ,ξ , we have

f ∗∗
γ,ζ � Mγ = f ∗∗

ξ,ζ ◦ fγ,ζ � Mγ .

Combining the equalities yields

f ∗∗
γ,ζ � Mγ = f ∗∗

ξ,ζ � Mγ .

This completes the proof ofSubclaimII.7.10. �

By the subclaim, we have thatf := ⋃
γ<ζ f ∗∗

γ,ζ � Mγ is a≺K-mapping from
⋃
γ<ζ Mγ onto

⋃
γ<ζ f ∗∗

γ,ζ (Mγ ).

SinceC is a(µ,µ+)-limit model and since
⋃
γ<ζ Mγ is an amalgamation base (as(M̄, ā, N̄ ) is nice) we can assume

that f is a partial automorphism ofC and extend it toF ∈ Aut(C) by Corollary I.2.20.
Now consider the direct limit defined byMζ

ζ := F−1(M∗∗
ζ ) with 〈 f ∗

ξ,ζ := F−1 ◦ f ∗∗
ξ,ζ | ξ < ζ 〉 and f ∗

ζ,ζ = idM∗
ζ
.

Let Mζ
i := fξ,ζ (M

ξ
i ) for all i < ξ . This is well-defined sincefξ,ζ is part of the direct limit of a directed system.

Notice that f ∗
ξ,ζ � Mξ = F−1 ◦ f ∗∗

ξ,ζ � Mξ = idMξ for ξ < ζ .

Subclaim II.7.11. (M̄, ā, N̄ ) � ζ <c
µ,ζ (M̄, ā, N̄)ζ .

Proof of Subclaim II.7.11. We need to verify that for allξ < ζ ,

(1) Mζ
ξ ≺K Mζ

ξ+1,

(2) aξ ∈ Mζ
ξ+1\Mζ

ξ and

(3) ga-tp(aξ /Mζ
ξ ) does notµ-split over Nξ .

To see thatM̄ζ is increasing, by the induction hypothesis,

fξ,ξ+1

(⋃
i<ξ

Mξ
i

)
≺K Mξ+1

ξ .

Applying fξ+1,ζ to both sides of this equation gives us for everyj < ξ ,

Mζ
j ≺K fξ,ζ

(⋃
i<ξ

Mξ
i

)
= fξ+1,ζ

(
fξ,ξ+1

(⋃
i<ξ

Mξ
i

))
≺K fξ+1,ζ (M

ξ+1
ξ ) = Mζ

ξ .

By the induction hypothesis for allξ < ζ , aξ /∈ Mξ+2
ξ and ga-tp(aξ /Mξ+2

ξ ) does notµ-split over Nξ . Since

fξ+2,ζ � Mξ+1 = idMξ+1, invariance gives usfξ+2,ζ (aξ ) = aξ /∈ fξ+2,ξ (M
ξ+2
ξ ) = Mζ

ξ and ga-tp(aξ /Mζ
ξ ) does not

µ-split over Nξ . �
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Notice that(M̄, ā, N̄ )ζ is continuous since it is formed from the direct limit of a continuous system. To see that
(M̄, ā, N̄ )ζ is amalgamable, notice that condition (5) of the construction guarantees that

⋃
ξ<ζ Mζ

ξ is a (µ, ζ )-limit

witnessed by〈 fξ,ζ
(⋃

i<ξ Mξ
i

)
| ξ < ζ 〉. This completes the construction.

Why is the construction sufficient to produce(M̄ ′, ā, N̄ ) as required? We have constructed a directed system
〈⋃i<γ Mγ

i | γ ≤ ξ < α〉 with 〈 fγ,ξ | γ ≤ ξ < α〉. By Fact II.7.7andSubclaimII.7.10 we can find a direct limit

to this system,M∗
α and≺K-mappings〈 fγ,α | γ ≤ α〉 suchthat fγ,α � Mi = idMi for all i < α. If (M̄, ā, N̄ ) is

amalgamable, thenM∗
α can be chosen to lie inC. Define for allζ < α, M∗

ζ := fζ+1,α(M
ζ+1
ζ ). Notice that as in

SubclaimII.7.11, (M̄, ā, N̄ ) <c
µ,α (M̄

∗, ā, N̄ ). And, as in the limit stage of the construction, we see that(M̄∗, ā, N̄ )
is continuous and amalgamable.

The second part of the statement of the theorem is obtained by modifying our construction by setting(M̄, ā, N̄ )β =
(M̄ ′, ā, N̄ ) and proceeding with the construction fromβ + 1. �

8. Refined orderings on towers

In this section we further develop the machinery of towers which will be used to construct a relatively full tower in
Section 9.

Definition II.8.1. For ordinalsα, α′, δ, δ′ < µ+ with α ≤ α′ andδ ≤ δ′. We saythat(M̄ ′, ā′, N̄ ′) ∈ +K∗
µ,α′×δ′ is a

<c-extension of(M̄, ā, N̄ ) ∈ +K∗
µ,α×δ iff

· for everyβ < α and everyi < δ, M ′
β,i is universal overMβ,i

· for everyβ < α andi + 1< δ, aβ,i = a′
β,i andNβ,i = N ′

β,i .

The following theorem is used to construct relatively full towers by adding realizations of strong types between
Mβ,i andMβ+1,0 in an<c-extension of the tower(M̄, ā, N̄ ) ∈ +K∗

µ,α×δ.

Theorem II.8.2. Under Hypothesis 1, given α an ordinal < µ+ and a nice tower, (M̄, ā, N̄ ) ∈ +K∗
µ,α×µα , we

can find an amalgamable, continuous extension (M̄ ′, ā′, N̄ ′) ∈ +K∗
µ,α+1×µ(α+1) of (M̄, ā, N̄ ) such that for a fixed

enumeration, {(p, N)ζl | l < µ}, of
⋃

i<µα St(Mζ,i ) for each ζ < α, we have that

(p, N)ζl ∼ (ga-tp(aζ+1,l+1/M ′
ζ+1,l+1), Nζ+1,l+1) � dom(pζl ). (∗)

Proof. We begin by constructing(M̄ ′, ā, N̄ ), acontinuous, amalgamable<c
µ,α×µα-extension of(M̄, ā, N̄ ), such that

for ζ+1< α, M ′
ζ+1,0 is a(µ,µ)-limit over

⋃
i<µα M ′

ζ,i . The construction of(M̄ ′, ā, N̄ ) is done by defining a directed

system of amalgamable, continuous partial extensions of(M̄, ā, N̄ ) usingTheorem II.7.1. Specifically,Theorem II.7.1
allows us to define by induction onζ , a directed system〈(M̄, ā, N̄ )ζ | 1 ≤ ζ ≤ α〉 and〈 fξ,ζ | 1 ≤ ξ ≤ ζ ≤ α〉
satisfying the following conditions:

(1) (M̄, ā, N̄ ) � (ζ × µα) <c
µ,ζ×µα (M̄, ā, N̄ )ζ

(2) (M̄, ā, N̄ )ζ is continuous and amalgamable
(3) (M̄, ā, N̄ )ζ lies inC for ζ < α

(4) Mζ+1
ζ+1,0 is a(µ,µ)-limit over

⋃
i<µα Mζ

ζ,i

(5) for all ξ < ζ , Mζ
ξ is universal over fξ,ζ

(⋃
i<ξ Mξ

i

)
(6) fξ,ζ � Mξ

i : Mξ
i → Mζ

i for i < ξ ≤ ζ and
(7) fξ,ζ � Mξ = idMξ for all ξ < ζ < α.

The details of the direct limit construction are similar to the direct limit construction in the limit case of
Theorem II.7.1.
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The construction is sufficient: Let(M̄ ′, ā, N̄ ) := (M̄, ā, N̄ )α . For eachζ + 1 < α, fix a sequence〈M∗
ζ,i | i < µ〉

witnessing thatM ′
ζ+1,0 is a(µ,µ)-limit over

⋃
i<µα M ′

ζ,i . DefineM ′
ζ,µα+i := M∗

ζ,i for eachi < µ andζ + 1< α.

M0,0

id
��

≺K M0,i

id
��

≺K
⋃

i<µα M0,i

id
��

≺K M1,0

id
��

M ′
0,0 ≺K M ′

0,i ≺K
⋃

i<µα M ′
0,i M∗

0,0
id ��M∗

0, j
id ��M∗

0, j+1
id ��

⋃
j<µ M∗

0, j = M ′
1,0

For eachζ + 1< α and eachl < µ, by theTheorem I.4.10, wecan findq ∈ ga-S(M ′
ζ+1,µα+l ) extending pζl such

thatq does notµ-split over Nζ
l . SinceM ′

ζ+1,µα+l+1 is universal overM ′
ζ+1,µα+l , there isa ∈ M ′

ζ+1,µα+l+1 realizing

q. Setaζ+1,µα+l = a and Nζ+1,µα+l = Nζ
l . This gives us a definition of(M̄ ′, ā, N̄ ) ∈ +K∗

µ,α×µ(α+1). To extend

this tower to a tower with index set(α + 1) × µ(α + 1), we use the fact that(M̄ ′, ā, N̄ ) is amalgamable to fixM∗
a (µ,µ(α + 1))-limit model over

⋃
i<µα,ζ<α M ′

α,i . Let 〈M ′
α,i | i < µ(α + 1)〉 witness this. WLOG we may assume

that M ′
α,i+1 is a (µ, ω)-limit over M ′

α,i for eachi < µ(α + 1). For eachi < µ(α + 1), fix aα,i ∈ M ′
α,i+1\M ′

α,i .
By Fact I.4.7and our choice ofM ′

α,i as a limit model, there is anN ≺K M ′
α,i suchthat M ′

α,i is universal overN

and ga-tp(aα,i/M ′
α,i ) does notµ-split over N . Set Nα,i = N . Notice that(M̄ ′, ā, N̄ ) ∈ +K∗

µ,(α+1)×µ(α+1) is as
required. �

9. Uniqueness of limit models

Recall the running assumptions:

(1)K is an abstract elementary class,
(2)K has no maximal models,
(3)K is categorical in someλ > LS(K),
(4) GCH and�µ+(Sµ

+
cf(µ)) holds for every cardinalµ < λ.

Under these assumptions and Hypothesis 1, we can prove the uniqueness of limit models using the results from
Sections 6and8.

Theorem II.9.1 (Uniqueness of Limit Models). Let µ be a cardinal θ1, θ2 limit ordinals such that θ1, θ2 < µ+ ≤ λ.
Under Hypothesis 1, if M1 and M2 are (µ, θ1) and (µ, θ2) limit models over M, respectively, then there exists an
isomorphism f : M1 ∼= M2 such that f � M = idM .

Proof. Let M ∈ Kam
µ be given. ByFact I.2.11, it is enough to show that there exists aθ2 such that for everyθ1 a limit

ordinal< µ+, we have that a(µ, θ1)-limit model overM is isomorphic to a(µ, θ2)-limit model overM. Takeθ2 such
thatθ2 = µθ2. Fix θ1 a limit ordinal< µ+. By Fact I.2.12, we mayassume thatθ1 is regular. UsingFact I.2.11again,
it is enough to construct a modelM∗ which is simultaneously a(µ, θ1)-limit model overM and a(µ, θ2)-limit model
overM.

The idea is to build a (scattered) array of models such that at some point in the array, we will find a model which
is a (µ, θ1)-limit model witnessed by its height in the array and is a(µ, θ2)-limit model witnessed by its horizontal
position in the array, relative fullness and continuity. We will define a chain of lengthµ+ of continuous towers while
increasing the index set of the towers in order to realize strong types as we proceed with the goal of producing many
relatively full rows.

Define by induction on 0< α < µ+ the<c-increasing sequence of towers,〈(M̄, ā, N̄ )α ∈ +K∗
µ,α×µα | α < µ+〉,

suchthat

(1) M ≺K Mα
0,0,

(2) (M̄, ā, N̄ )α is continuous and amalgamable,
(3) (M̄, ā, N̄ )α := ⋃

β<α(M̄, ā, N̄ )β for α a limit ordinal and
(4) In successor stages in new intervals of lengthµ, put in representatives of allSt-types from theprevious stages.

More formally, if (p, N) ∈ St(Mα
β,i ) for i < µα andβ < α, thereexists j ∈ [µα,µ(α + 1)] suchthat

(p, N) ∼ (ga-tp(aβ+1, j/Mα+1
β+1, j ), N j ) � Mα

β,i .
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This construction is possible:
α = 1: We can choosēM∗ = 〈M∗

i | i < µ〉 to be an≺K increasing continuous sequence of limit models of cardinality
µ with M∗

0 = M andM∗
i+1 universal over M∗

i . For eachi < µ, fix a1
0,i ∈ M∗

i+1\M∗
i . Now consider ga-tp(a1

0,i/M∗
i ).

SinceM∗
i is a limit model, we can applyFact I.4.7to fix N1

0,i ∈ Kam
µ such that ga-tp(a1

0,i/M∗
i ) does notµ-split over

N1
0,i andM∗

i is universal overN1
0,i . Let ā1 := 〈a1

0,i | i < µ〉 andN̄1 = 〈N1
0,i | i < µ〉.

α a limit ordinal: Take(M̄, ā, N̄ )α := ⋃
β<α(M̄, ā, N̄ )β . Clearly (M̄, ā, N̄ )α is continuous. To see that(M̄, ā, N̄ )α

is also amalgamable, we notice that
⋃
β,i∈α×µα Mα

(β,i) is a(µ, α)-limit model witnessed by〈⋃i<µβ Mβ
β,i | β < α〉.

α = β + 1: Suppose that(M̄, ā, N̄ )β has been defined. ByFact II.6.4, for every γ < β, we can enumerate⋃
k<µβ St(Mβ

γ,k) as {(p, N)γl | l < µ}. By Theorem II.8.2, we can find a continuous, amalgamable extension

(M̄, ā, N̄ )β+1 ∈ +K∗
µ,β+1×µ(β+1) of (M̄, ā, N̄)β such that for everyl < µ andγ < β,

(p, N)γl ∼ (ga-tp(aγ+1,µβ+l/Mβ+1
γ+1,µβ+l ), Nγ+1,µβ+l ) � dom(pγl ).

This completes the construction.
We now want to identify all the rows of the array which are relatively full.

Claim II.9.2. For δ a limit ordinal < µ+, we have that (M̄, ā, N̄ )δ is full relative to 〈M̄δ
β,i | (β, i) ∈ δ × µδ〉 where

M̄δ
β,i := 〈Mγ

β,i | γ < δ〉.
Proof. Let (p, N) ∈ St(Mδ

β,i ) be given such thatN = Mγ

β,i for someγ < δ, β < δ and i < µδ. Since our
construction is increasing and continuous, there existsδ′ < δ suchthat (β, i) ∈ δ′ × µδ′ andγ < δ′. Notice then
that Mδ′

β,i is universal over N . Furthermore,p � Mδ′
β,i does notµ-split over N . Thus(p, N) � Mδ′

β,i ∈ St(Mδ′
β,i ). By

condition (4) of the construction, there existsj < µ(δ′ + 1), such that

(p, N) � Mδ′
β,i ∼ (ga-tp(aβ+1, j/Mβ+1

β+1, j ), Nβ+1, j ) � Mδ′
β,i .

SinceMβ+1
β+1, j ≺K Mδ

β+1, j and ga-tp(aβ+1, j/Mδ
β+1, j ) does notµ-split over Nβ+1, j , we can replaceMβ+1

β+1, j with

Mδ
β+1, j :

(p, N) � Mδ′
β,i ∼ (ga-tp(aβ+1, j/Mδ

β+1, j ), Nβ+1, j ) � Mδ′
β,i .

Let M ′ be a universal extension ofMδ
β+1, j . By definition of ∼, thereexists q ∈ ga-S(M ′) suchthat q extends p �

Mδ′
β,i = ga-tp(aβ+1, j/Mδ′

β,i ) andq does notµ-split over N andNβ+1, j . By the uniqueness of non-splitting extensions

(Theorem I.4.12), sincep does notµ split over N , we have thatq � Mδ
β,i = p. Also, since ga-tp(aβ+1, j/Mδ

β+1, j )

does notµ-split over Nβ+1, j , Theorem I.4.12gives usq � Mδ
β+1, j = ga-tp(aβ+1, j/Mδ

β+1, j ). By definition of ∼ and
Lemma II.6.3, q also witnesses that

(ga-tp(aβ+1, j/Mδ
β+1, j ), Nβ+1, j ) � Mδ

β,i ∼ (p, N).

Since(p, N) was chosen arbitrarily, we have verified that(M̄, ā, N̄ )δ satisfies the definition of relative fullness.�

Take〈δζ < µ+ | ζ ≤ θ1〉 to be an increasing and continuous sequence of limit ordinals> θ2. We will consider the
restrictions (in the sense ofNotation II.9.3) of (M̄, ā, N̄ )δζ to θ2 × µδζ :

Notation II.9.3. For θ andδ ordinals< µ+ and a sequencēM indexed by a superset ofθ × µδ, we will abbreviate
〈Mβ,i | β < θ andi < µδ} by M̄ �θ×µδ .

Define

M∗ :=
⋃
ζ<θ1

⋃
i∈θ2×µδζ

M
δζ
i =

⋃
i∈θ2×µδθ1

M
δθ1
i .

We will now verify that M∗ is a(µ, θ1)-limit over M and a(µ, θ2)-limit over M.
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Notice that〈⋃i∈θ2×µδζ M
δζ
i | ζ < θ1〉 witnesses thatM∗ is a(µ, θ1) limit. SinceM ≺K Mδ0

0,0, M∗ is a(µ, θ1)-limit
overM.

By Claim II.9.2 and the fact that the restriction of a relatively full tower is relatively full (Proposition II.6.9), we
have that

(M̄, ā, N̄ )δθ1 �θ2×µδζ is full relative to〈M̄
δθ1
β,i | (β, i) ∈ θ2 × µδθ1〉,

whereM̄
δθ1
β,i := 〈Mγ

β,i | γ < δθ1〉. Furthermore, we seethat(M̄, ā, N̄ )δθ1 �θ2×µδθ1 is continuous. Sinceθ2 = µ · θ2, we
can applyTheorem II.6.10to conclude thatM∗ is a(µ, θ2)-limit model overM. �

Remark II.9.4. The above proof implicitly shows the decomposition of a relatively full tower into a resolution ofθ ′
many towers for everylimit θ ′ < µ+.

Part III. Conclusion

We provide a partial proof of Hypothesis 1. We also discuss reduced towers, which appear in the [33] and may be
useful as a tool to prove the amalgamation property for categorical AECs with no maximal models. We will continue
to makeAssumption 0.7.

10. <c
µ,α-Extension property for nice towers

In [33], Shelah and Villaveces claim that every tower in+K∗
µ,α has a proper<c

µ,α extension. This proof does not

converge. Here we prove a weaker extension property. Namely, we show that everynice tower in
+K*

µ,α has a proper
<c
µ,α-extension (Corollary III.10.6). This is a proof of an approximation to the statement of Hypothesis 1 which states

that every continuous tower has an amalgamable extension insideC.

Theorem III.10.1. Let µ be a cardinal and α, γ ordinals such that γ < α < µ+ ≤ λ. If (M̄, ā, N̄ ) ∈ +K∗
µ,α

is nice and (M̄ ′′, ā, N̄ ) � γ is an amalgamable partial extension of (M̄, ā, N̄ ), then there exists an amalgamable
(M̄∗, ā, N̄ ) ∈ +K∗

µ,α and a ≺K-mapping f such that

(1) (M̄, ā, N̄ ) <c
µ,α (M̄

∗, ā, N̄ )
(2) f (M ′′

i ) = M∗
i for all i < γ and

(3) f � Mi = idMi for all i < γ .

Furthermore if
⋃

i<α Mi ≺K C and b̄ ∈ ≤µC is such that b̄ ∩⋃i<α Mi = ∅, then we can find (M̄∗, ā, N̄ ) as above
with b̄ ∩⋃i<α M∗

i = ∅.

Remark III.10.2. If (M̄, ā, N̄ ) is amalgamable and
⋃

i<α Mi ≺K C, then wecan find an extension(M̄ ′, ā, N̄ ) such
that

⋃
i<α M ′

i ≺K C.

Theorem III.10.1is stronger than the<c
µ,α-extension property since it allows us to avoidµ-many elements(b̄).

This is possible due to Weak Disjoint Amalgamation,Fact I.3.15.

Proof of Theorem III.10.1. Let an amalgamable(M̄, ā, N̄ ) ∈ +K∗
µ,α be given.

As in the proofs ofTheorems II.7.1andII.8.2, we will define by induction oni < α a direct system of models
〈M ′

i | i < α〉 and≺K-mappings,〈 f j,i | j < i < α〉 such that for i ≤ α:

(1) (〈 f j,i (M ′
j ) | j ≤ i〉, ā � i + 1, N̄ � i + 1) is a<c

µ,i+1-extension of(M̄, ā, N̄ ) � (i + 1),

(2) (〈M ′
j | j < i〉, 〈 f j,i | j ≤ i〉) forms a directed system,

(3) M ′
i is universal overMi ,

(4) M ′
i+1 is universal over fi,i+1(M ′

i ),
(5) f j,i � M j = idM j .



M. VanDieren / Annals of Pure and Applied Logic 141 (2006) 108–147 143

Notice that theM ′
i ’s will not necessarily form an extension of the tower(M̄, ā, N̄ ). Rather, for eachi < α, we find

some image of〈M ′
j | j < i〉 which will extend the initial segment of lengthi of (M̄, ā, N̄ ) (see condition (1) of the

construction).
The construction is possible:
i = 0: SinceM0 is an amalgamation base, we can findM ′′

0 ∈ K∗
µ (a first approximation of the desiredM ′

0) such
that M ′′

0 is universal over M0. By Theorem I.4.10, we mayassume that ga-tp(a0/M ′′
0 ) does notµ-split over N0 and

M ′′
0 ≺K C. Sincea0 /∈ M0 and ga-tp(a0/M0) does notµ-split over N0, we know thata0 /∈ M ′′

0 . But, we might have
that for somel > 0, al ∈ M ′′

0 or b̄ ∩ M ′′
0 �= ∅. We use Weak Disjoint Amalgamation to avoid{al | 0 < l < α}

andb̄. By the Downward Löwenheim–Skolem Axiom for AECs (Axiom 4) we can chooseM2 ∈ Kµ suchthat M ′′
0 ,

M1 ≺K M2 ≺K C.
By Corollary I.3.16(applied to M1, Mα , M2 and〈al | 0< l < α〉 ∪ b̄), wecan find a≺K-mappingh suchthat

· h : M2 → C

· h � M1 = idM1

· h(M2) ∩ ({al | 0< l < α} ∪ b̄) = ∅.

Define M ′
0 := h(M ′′

0 ). Notice thata0 /∈ M ′
0 becausea0 /∈ M ′′

0 andh(a0) = a0. Clearly M ′
0 ∩ ({al | 0 ≤ l <

α} ∪ b̄) = ∅, sinceM ′′
0 ≺K M2 andh(M2) ∩ {al | 0 < l < α} = ∅. We need only verify that ga-tp(a0/M ′

0) does
notµ-split over N0. By invariance, ga-tp(a0/M ′′

0 ) does notµ-split over N0 implies that ga-tp(h(a0)/h(M ′′
0 )) does not

µ-split over N0. But recallh(a0) = a0 andh(M ′′
0 ) = M ′

0. Thus ga-tp(a0/M ′
0) does notµ-split over N0.

Set f0,0 := idM ′
0
.

Below is a diagram of the successor stage of the construction.

a0

∈

a j

∈
M0

id
��

≺K M1

id

��

≺K · · · ≺K M j ≺K

id

��

M j+1 ≺K . . .

id

��

M ′
0

f0,1
��

f0, j

��
f0, j+1

��

f0,1(M
′
0)

f1, j

��

id �� M ′
1

f1, j

��

f1, j+1

��

f0, j (M
′
0)

f j, j+1

��

id �� f1, j (M
′
1)

f j, j+1

��

. . .id �� M ′
j

f j, j+1

��
f0, j+1(M

′
j+1)

id �� f1, j+1(M
′
1)

...
id �� f j, j+1(M

′
j )

id �� M ′
j+1

i = j + 1: Suppose that we have completed the construction for allk ≤ j . SinceM ′
j and M j+1 are bothK-

substructures ofC, wecan apply the Downward-L¨owenheim Axiom for AECs to findM ′′′
j+1 (a first approximation to

M ′
j+1) amodel of cardinalityµ extending bothM ′

j andM j+1. WLOG byTheorem I.2.17andLemma I.2.24we may
assume thatM ′′′

j+1 is a limit model of cardinalityµ andM ′′′
j+1 is universal overM j+1 andM ′

j . By Theorem I.4.10, we
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can find a≺K-mapping f : M ′′′
j+1 → C suchthat f � M j+1 = idM j+1 and ga-tp(a j+1/ f (M ′′′

j+1)) does notµ-split
overN j+1. SetM ′′

j+1 := f (M ′′′
j+1).

Subclaim III.10.3. a j+1 /∈ M ′′
j+1.

Proof of Subclaim III.10.3. Suppose thata j+1 ∈ M ′′
j+1. SinceM j+1 is universal over N j+1, there exists a≺K-

mapping,g : M ′′
j+1 → M j+1 suchthatg � N j+1 = idN j+1. Since ga-tp(a j+1/M ′′

j+1) does notµ-split over N j+1, we
have that

ga-tp(a j+1/g(M ′′
j+1) = ga-tp(g(a j+1)/g(M ′′

j+1)).

Notice that becauseg(a j+1) ∈ g(M ′′
j+1), we have thata j+1 = g(a j+1). Thusa j+1 ∈ g(M ′′

j+1) ≺K M j+1. This
contradicts the definition of towers:a j+1 /∈ M j+1. �

M ′′
j+1 may serve us well if it does not contain anyal for j + 1 ≤ l < α or any part ofb̄, but this is notguaranteed.

So we need to make an adjustment. LetM2 bea model of cardinalityµ suchthatM j+2,M ′′
j+1 ≺K M2 ≺K C. Notice

thatC is universal over M j+2. Thus we can applyCorollary I.3.16to M j+2, Mα , M2 and〈al | j + 2 ≤ l < α〉 ∪ b̄.
This yields a≺K-mappingh suchthat

· h : M2 → C
· h � M j+2 = idM j+2 and
· h(M2) ∩ ({al | j + 2 ≤ l < α} ∪ b̄) = ∅.

Set M ′
j+1 := h(M ′′

j+1). Notice that by invariance, ga-tp(a j+1/M ′′
j+1) does notµ-split over N j+1 implies

that ga-tp(h(a j+1)/h(M ′′
j+1)) does notµ-split over h(N j+1). Recalling thath � M j+2 = idM j+2 we have that

ga-tp(a j+1/M ′′
j+1) does notµ-split over N j+1. We need to verify thata j+1 /∈ M ′

j+1. This holds becausea j+1 /∈ M ′′
j+1

andh(a j+1) = a j+1.
Set f j+1, j+1 = idM j+1 and f j, j+1 := h ◦ f � M ′

j . To guarantee that we have a directed system, fork < j , define
fk, j+1 := f j, j+1 ◦ fk, j .

i is a limit ordinal: Suppose that(〈M ′
j | j < i〉, 〈 fk, j | k ≤ j < i〉) have been defined. Since it is a directed

system, wecan take direct limits.

Subclaim III.10.4. We can choose a direct limit (M∗
i , 〈 f ∗

j,i | j ≤ i〉) of (〈M ′
j | j < i〉, 〈 fk, j | k ≤ j < i〉) such that

(1) M∗
i ≺K C

(2) f ∗
j,i � M j = idM j for every j < i .

Proof of Subclaim III.10.4. This follows fromSubclaimII.7.10and the assumption that(M̄, ā, N̄ ) is nice. �

By Condition (4) of the construction, notice thatM∗
i is a (µ, i)-limit model witnessed by〈 f ∗

j,i (M
′
j ) | j < i〉.

HenceM∗
i is an amalgamation base. SinceM∗

i andMi both live inside ofC, wecan findM ′′′
i ∈ K∗

µ which isuniversal
overMi and universaloverM∗

i .
By Theorem I.4.10we can find a≺K-mapping f : M ′′′

i → C suchthat f � Mi = idMi and ga-tp(ai/ f (M ′′′
i )) does

notµ-split over Ni . SetM ′′
i := f (M ′′′

i ). By a similar argument toSubclaim III.10.3, wecan see thatai /∈ M ′′
i .

M ′′
i may contain someal when i ≤ l < α or part of b̄. We need to make an adjustment using Weak Disjoint

Amalgamation. Let M2 be a model of cardinalityµ such that M ′′
i ,Mi+1 ≺K M2 ≺K C. By Corollary I.3.16

applied toMi , Mα , M2 and〈al | i < l < α〉 ∪ b̄ we can findh : M ′′
i → C suchthat h � Mi+1 = idMi+1 and

h(M2) ∩ ({al | i < l < α} ∪ b̄) = ∅.
Set M ′

i := h(M ′′
i ). We need to verify thatai /∈ M ′

i and ga-tp(ai/M ′
i ) does notµ-split over Ni . Sinceai /∈ M ′′

i
andh(ai ) = ai , we have thatai /∈ h(M ′′

i ) = M ′
i . By invariance of non-splitting, ga-tp(ai/M ′′

i ) notµ-splitting over
Ni implies that ga-tp(h(ai )/h(M ′′

i )) does notµ-split over h(Ni ). Recalling our definition ofh and M ′
i , this yields

ga-tp(ai/M ′
i ) does notµ-split over Ni .

As in the proof of Theorem II.7.1, we seethat (〈( f j,i (M j ) | j ≤ i〉, ā � i, N̄ � i) is a <c
µ,i -extension of

(M̄, ā, N̄ ) � i .
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Set fi,i := idMi ,i , and for j < i , f j,i := h ◦ f ◦ f ∗
j,i . This completes the construction.

The construction is enough: We have constructed a directed system〈⋃i<γ M ′
i | i < α〉 with 〈 fi, j | i ≤ j < α〉.

By Fact II.7.7andSubclaimII.7.10 we can find a direct limit to this system,M∗
α and≺K-mappings〈 fi,α | i ≤ α〉

suchthat fi,α � Mi = idMi for all i < α andM∗
α avoidsb̄. If (M̄, ā, N̄ ) is amalgamable, thenM∗

α can be chosen to lie
in C. Define for all j < α, M∗

j := f j+1,α(M ′
j ). Notice that as inSubclaimII.7.11, (M̄, ā, N̄ ) <c

µ,α (M̄
∗, ā, N̄ ). And,

as in the limit stage of the construction, we see that(M̄∗, ā, N̄ ) is continuous and amalgamable.�

Remark III.10.5. Notice that inTheorem III.10.1if the partial extension(M̄ ′, ā, N̄ ) is continuous, then we can
chooseM̄ ′′ such that it is continuous belowγ , that is for everyi < γ with i a limit ordinal, M ′′

i = ⋃
j<i M ′′

j .

Corollary III.10.6 (The <c
µ,α-Extension Property for Nice Towers). If

(M̄, ā, N̄ ) ∈ +K∗
µ,α is nice, then there exists an amalgamable (M̄ ′, ā, N̄ ) ∈ +K∗

µ,α such that (M̄, ā, N̄ ) <c
µ,α

(M̄ ′, ā, N̄ ).

Proof. Takeγ = 0 in Theorem III.10.1 �

Remark III.10.7. Notice that Hypothesis 3 implies that every tower is amalgamable. Thus Hypothesis 3 together with
Corollary III.10.6 imply the<c

µ,α-extension property for all towers.

11. Reduced towers

Shelah and Villaveces introduce the notion of reduced towers in order to show the density of continuous towers.
While there are difficulties with Shelah and Villaveces’ approach, we discuss reduced towers because they have
characteristics similar to strongly minimal types in first-order model theory. Additionally, they generalize reduced
triples used in [31] to developanotion of non-forking.

Definition III.11.1. A tower (M̄, ā, N̄ ) ∈ +K∗
µ,α is said to bereduced providedthat for every(M̄ ′, ā, N̄ ) ∈ +K∗

µ,α

with (M̄, ā, N̄ ) ≤c
µ,α (M̄

′, ā, N̄ ) we have thatfor everyi < α,

M ′
i ∩

⋃
j<α

M j = Mi . (∗)i

If we take a<c-increasing chain of reduced towers, the unionwill be reduced. The following proposition appears
in [33] (Theorem 3.1.14 of [33]) for reduced towers. We provide the proof for completeness.

Theorem III.11.2. If 〈(M̄, ā, N̄ )γ ∈ +K∗
µ,α | γ < β〉 is a <c

µ,α-increasing and continuous sequence of reduced
towers, then the union of this sequence of towers is a reduced tower.

Proof. Denote by(M̄, ā, N̄ )β theunion of the sequence of towers. That isāβ = ā0, N̄β = N̄0 andM̄β = 〈Mβ
i | i <

α〉 whereMβ
i = ⋃

γ<β Mγ
i .

Suppose that(M̄, ā, N̄ )β is not reduced. Let(M̄ ′, ā, N̄ ) ∈ +K∗
µ,α witness this. Then there exists ani < α and

an elementb suchthatb ∈
(

M ′
i ∩⋃ j<α Mβ

j

)
\Mβ

i . Thereexists γ < β suchthatb ∈ ⋃
j<α Mγ

j \Mγ

i . Notice that

(M̄ ′, ā, N̄ ) witnesses that(M̄, ā, N̄ )γ is not reduced. �

The following appears in [33] (Theorem 3.1.13).

Fact III.11.3 (Density of Reduced Towers). There exists a reduced <c
µ,α-extension of every nice tower in +K∗

µ,α.

Proof. Suppose for the sake of contradiction that no<c
µ,α-extension of the tower(M̄, ā, N̄ ) is reduced. This allows

us to construct a≤c
µ,α-increasing and continuous sequence of towers〈(M̄, ā, N̄ )ζ ∈ +K∗

µ,α | ζ < µ+〉 suchthat

(M̄, ā, N̄ )ζ+1 witnesses that(M̄, ā, N̄ )ζ is not reduced.
The construction: Since(M̄, ā, N̄ ) is nice, we can applyCorollary III.10.6to find (M̄, ā, N̄ )0 a<c

µ,α extension of
(M̄, ā, N̄ ).
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Suppose that(M̄, ā, N̄ )ζ has been defined. Since it is a<c
µ,α-extension of(M̄, ā, N̄ ), we know it is not reduced.

Let (M̄, ā, N̄ )ζ+1 ∈ +K∗
µ,α be a≤c

µ,α-extension of(M̄, ā, N̄ )ζ , witnessing this.
For ζ a limit ordinal, let (M̄, ā, N̄ )ζ = ⋃

γ<ζ (M̄, ā, N̄ )γ . This completes the construction.

For eachb ∈ ⋃ζ<µ+,i<α Mζ
i define

i(b) := min


i < α

∣∣∣∣∣∣ b ∈
⋃
ζ<µ+

⋃
j<i

Mζ
j


 and

ζ(b) := min
{
ζ < µ+ | b ∈ Mζ

i(b)

}
.

ζ(·) can be viewed as a function fromµ+ toµ+. Thus there exists a clubE = {
δ < µ+ | ∀b ∈ ⋃i<α Mδ

i , ζ(b) < δ
}
.

Actually, all we need is forE to be non-empty.
Fix δ ∈ E . By construction(M̄, ā, N̄ )δ+1 witnesses the fact that(M̄, ā, N̄ )δ is not reduced. So we may fixi < α

andb ∈ Mδ+1
i ∩⋃ j<α Mδ

j suchthatb /∈ Mδ
i . Sinceb ∈ Mδ+1

i , we have thati(b) ≤ i . Sinceδ ∈ E , we know that

there existsζ < δ suchthatb ∈ Mζ

i(b). Becauseζ < δ andi(b) < i , we have thatb ∈ Mδ
i as well. This contradicts

our choice ofi andb witnessing the failure of(M̄, ā, N̄ )δ to be reduced. �

A variation of the following theorem was claimed in [33] for reduced towers. Unfortunately, their proof does not
converge. Under Hypothesis 3, we resolve their problems here.

Theorem III.11.4 (Reduced Towers are Continuous). Under Hypothesis 3, if (M̄, ā, N̄ ) ∈ +K∗
µ,α is reduced, then it

is continuous.

The keys to resolving problems of [33] are the extra conditions in the main construction andthe following lemma
which is aconsequence ofTheorem III.10.1and the definition of reduced tower.

Lemma III.11.5. Suppose that (M̄, ā, N̄) ∈ +K∗
µ,α is reduced and nice, then for every β < α, (M̄, ā, N̄ ) � β is

reduced.

Notice that without the full<c
µ,α-extension property, it is conceivable to have a discontinuous reduced tower with

non-reduced restrictions.

Proof of Theorem III.11.4. Suppose the claim fails forµ andδ is the minimal limit ordinal for which it fails. More
precisely,δ is the minimal element of

S =


δ < µ+

δ is a limit ordinal such that there exists
anα < µ+ and
a nice, reduced tower(M̄, ā, N̄ ) ∈ +K∗

µ,α

with Mδ �K
⋃

i<δ Mi


 .

Let α witness thatδ ∈ S. Hypothesis 3 implies that every tower is amalgamable. Thus we can apply
Lemma III.11.5, to assume thatα = δ+1. Fix (M̄, ā, N̄ ) ∈ +K∗

µ,δ+1 witnessing thatδ ∈ S. Letb ∈ Mδ\⋃i<δ Mi be
given. ByFact III.11.3, Hypothesis 3 and the minimality ofδ, every nice tower of lengthδ has a continuous extension.
Combining this with the fact that(M̄, ā, N̄ ) � δ is amalgamable, we can applyProposition II.7.2to (M̄, ā, N̄ ) � δ and
b to find a<c

µ,δ-extension of(M̄, ā, N̄ ) � δ, say(M̄ ′, ā � δ, N̄ � δ) ∈ +K∗
µ,δ, in C containingb. Let M ′

δ ≺K C be a

limit model universal over Mδ containing
⋃

i<δ M ′
i . Notice that(M̄ ′, ā, N̄ ) ∈ +K*

µ,δ+1 is an extension of(M̄, ā, N̄ )

witnessing that(M̄, ā, N̄ ) is not reduced. �

Positive solutions to the following questions would allow us to adjust the previous proof to conclude that every
nice tower has a continuous extension without any extra hypothesis.

Question III.11.6. Is it possible to remove Hypothesis 3 in the proof ofTheorem III.11.4? Alternatively, can one
show the density of nice, reduced towers?

The next step towards Shelah’s Categoricity Conjecture is to show that the uniqueness of limit models implies the
amalgamation property in this context.
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In the paper “Categoricity in abstract elementary classes with no maximal models”, we
address gaps in Saharon Shelah and Andrés Villaveces’ (1999) proof in [4] of the uniqueness
of limit models of cardinality μ in λ-categorical abstract elementary classes with no
maximal models, where λ is some cardinal larger than μ. Both [4] (Shelah and Villaveces,
1999) and [5] (VanDieren, 2006) employ set theoretic assumptions, namely GCH and

Φμ+ (Sμ+
cf(μ)

).
Recently, Tapani Hyttinen pointed out a problem in an early draft of [3] (Grossberg
et al., 2011) to Villaveces. This problem stems from the proof in Shelah and Villaveces’
(1999) [4] that reduced towers are continuous. Residues of this problem also infect the
proof of Proposition II.7.2 in VanDieren (2006) [5]. We respond to the issues in Shelah
and Villaveces (1999) [4] and VanDieren (2006) [5] with alternative proofs under the
strengthened assumption that the abstract elementary class is categorical in μ+.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A tower is the main construct in [4] and [5] that is used to prove the uniqueness of limit models. A tower is a sequence
of length α of amalgamation bases (specifically limit models), denoted by M̄ = 〈Mi ∈ K∗

μ | i < α〉, along with a sequence of

designated elements ā = 〈ai+1 ∈ Mi+1 \ Mi | i < α〉 and a sequence of designated submodels N̄ = 〈Ni+1 | i < α〉 for which
Mi ≺K Mi+1, ga-tp(ai/Mi) does not μ-split over Ni , and Mi is universal over Ni (see Definition I.5.1 of [5]). Notice that
the sequence M̄ is not required to be continuous. In fact, many times we will not have continuous towers. For instance,
discontinuous towers arise in the proof that an amalgamable tower (M̄, ā, N̄) can be extended to a tower (M̄ ′, ā′, N̄ ′) so that
ā = ā′ , N̄ = N̄ ′ , and the models M ′

i are universal extensions of Mi (see Theorem III.10.1 of [5]).
There are a couple of reasons why continuous towers are utilized in the proof the uniqueness of limit models. Because

in [4] and [5] we do not have the full amalgamation property, the continuity of towers allows us to avoid models that are
not amalgamation bases when we take a union of an increasing chain of towers. Even in an environment which admits full
amalgamation, the structure of the proof of the uniqueness of limit models requires a construction of an array of models
in which the last row and last column of this array need to be continuous (see the first figure in Part II of [5]). Finding
continuous extensions of towers is intrinsic in the construction of the array of models in the proof of the uniqueness of
limit models in [3–5].

In [5] we explore two approaches to produce continuous towers. One method is to consider reduced towers and verify
that they are continuous (Theorem III.11.4 from [5]) and dense. The other approach is to explicitly construct continuous ex-
tensions. This was attempted in Theorem II.7.1 of [5]. In both of these approaches, a gap appears which we fix here assuming
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categoricity in μ+ . In Section 2 we provide a proof that reduced towers are continuous in a μ+-categorical abstract elemen-
tary class with no maximal models, and in Section 3 we provide an alternative proof that continuous extensions of towers
exist in μ+-categorical classes. As a result, the following theorem replaces the main result of [4] and Theorem II.9.1 of [5].

Theorem 1. Assume that K is a μ+-categorical abstract elementary class with no maximal models, for some μ � LS(K). Further

assume that GCH and Φμ+ (Sμ+
cf(μ)

) hold. Let θ1 and θ2 be limit ordinals < μ+ . Under Hypothesis 1,2 if M1 and M2 are (μ, θ1)- and
(μ, θ2)-limit models over M, respectively, then there exists an isomorphism f : M1 ∼= M2 such that f � M is the identity mapping.

For the remainder of this document, we assume that K is an abstract elementary class with no maximal models that
is categorical in μ+ , for some μ � LS(K). While this assumption is stronger than assuming categoricity in some λ larger
than μ, in the broader context of categoricity results for abstract elementary classes, it is routine to work in a class that is
categorical in a successor cardinal. Furthermore, this assumption is sufficient for the application of the uniqueness of limit
models in the upward categoricity transfer theorems in [1] and [2].

In this paper, we will also use facts from [5] that follow from GCH and Φμ+ (Sμ+
cf(μ)

): specifically, limit models are amal-
gamation bases and every amalgamation base of cardinality μ has a universal extension of the same cardinality. We refer
the reader to [5] for definitions and notation.

2. Reduced towers are continuous

One method of generating continuous extensions of towers is to restrict all towers to be reduced towers and show that
these towers are continuous. The assertion that reduced towers are continuous is made in Theorem 3.1.15 of [4].

There are two problems with the proof of Theorem 3.1.15 in [4]. The first involves inadvertently constructing models that
are not amalgamation bases. This problem is fixed in [5] by the introduction of nice towers. The other issue was not known
or addressed in [5]. It was first identified by Hyttinen when the problem was reproduced in an early draft of [3]. The diffi-
culty occurs at the induction step of the construction. This step of the construction is isolated as Proposition II.7.2 in [5]. The
proposition states that given a tower (M̄, ā, N̄) and an element b outside of the tower, one can find an extension (M̄ ′, ā, N̄)

of (M̄, ā, N̄) which contains b. There are several conditions that must be satisfied simultaneously in the construction. It is
not clear how all of these conditions can simultaneously hold under the given assumptions.

Below, we prove a variation of Theorem 3.1.15 of [4] that is sufficient to carry out the uniqueness of limit models
proof in [5]. It replaces Theorem III.11.4 from [5]. This proof can also be adapted to fix Proposition II.7.2 in [5] under the
assumption of categoricity in μ+ .

Theorem 2. Under the running assumptions of this paper, most notably the assumption that K is categorical in μ+ , if (M̄, ā, N̄) is a
nice, reduced tower constructed of models of cardinality μ, then (M̄, ā, N̄) is continuous.

Proof. Suppose the theorem fails. Let (M̄, ā, N̄) ∈ K∗
μ,α be a counter-example of minimal length, α. Notice that by

Lemma III.11.5 of [5], we can conclude that α = δ + 1 for some limit ordinal δ and that the failure of continuity must
occur at δ. Let b ∈ Mδ \ ⋃

i<δ Mi witness the discontinuity of the tower.
By the minimality of α and the density of reduced towers (Theorem III.11.2 of [5]) we can construct a <c

μ,δ-increasing

and continuous chain of reduced, continuous towers 〈(M̄, ā, N̄)i ∈ K∗
μ,δ | i < μ+〉 with (M̄, ā, N̄)0 := (M̄, ā, N̄) � δ. Let

M̌ := ⋃
i<μ+, β<δ Mi

β . Because M̌ is a model of cardinality μ+ , our categoricity assumption tells us that it must be Galois-

saturated. Let b̌ ∈ M̌ realize ga-tp(b/
⋃

β<δ Mβ). Fix i so that b̌ ∈ ⋃
β<δ Mi

β . By the equality of the types of b and b̌

over
⋃

β<δ Mβ , we can fix a K-mapping f so that f (b̌) = b and f �
⋃

β<δ Mβ is the identity. Now consider the tower

(M̄ ′, ā, N̄) ∈ K∗
μ,α defined by setting M ′

β := f (Mi
β) for β < δ and choosing M ′

δ to be a limit model which extends
⋃

β<δ M ′
β

and is universal over Mδ . Notice that (M̄ ′, ā, N̄) and b witness that (M̄, ā, N̄) is not reduced. �
3. Continuous extensions exist

Proposition II.7.2 in [5] is used to prove Theorem II.7.1 which asserts that every nice tower has a continuous extension.
Avoiding the problem in the proof of Proposition II.7.2, we provide an alternative and simpler proof of the existence of
continuous extensions of continuous towers under the assumption of categoricity.

Theorem 3. Assuming categoricity in μ+ and given a continuous tower (M̄, ā, N̄) ∈K∗
μ,δ , there exists a continuous tower (M̄ ′, ā, N̄) ∈

K∗
μ,δ such that (M̄, ā, N̄) <c

μ,δ (M̄ ′, ā, N̄).

2 Hypothesis 1 of [5] is the statement: every continuous tower has an amalgamable extension inside C. A more natural statement that implies Hy-
pothesis 1 is that the class of amalgamation bases of cardinality μ is closed under unions of ≺K-increasing chains of length < μ+ . In particular the
amalgamation property implies Hypothesis 1.
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Proof. We proceed to prove by induction on δ that each continuous tower of length δ has a continuous extension. By the
definition of the ordering on towers, <c

μ,δ , the only difficult stage of the induction is when δ = α + 1 and α is a limit
ordinal.

Fix (M̄, ā, N̄) ∈ K∗
μ,α+1 a continuous tower. By our induction hypothesis, the subtower (M̄, ā, N̄) � α has continuous

extensions of length α. Build a <c
μ,α-increasing and continuous chain of continuous towers, 〈(M̄, ā, N̄)i ∈K∗

μ,α | i < μ+〉, so

that (M̄, ā, N̄)0 := (M̄, ā, N̄) � α. We will show that one of the towers in this chain can be lengthened to a continuous tower
that extends (M̄, ā, N̄).

First, extend each one of the towers of length α in this chain 〈(M̄, ā, N̄)i ∈ K∗
μ,α | i < μ+〉 to a tower of length α + 1 by

defining the last model in the extended tower to be Mi
α := ⋃

β<α Mi
β for i < μ+ . Consider the top model in this sequence

of towers, M̌ := ⋃
i<μ+ Mi

α . It is a model of cardinality μ+; so by our categoricity assumption it is Galois-saturated and

universal over every model of cardinality μ. Moreover, M̌ is a (μ,μ+)-limit model and universal over Mα . In particular,
there exists an i < μ+ such that Mi

α is universal over Mα . Fix such an i and define the tower (M̄ ′, ā, N̄) of length α + 1 by
setting M ′

β := Mi
β for β � α. By our selection of i and by (M̄, ā, N̄)i being selected as a partial extension of (M̄, ā, N̄), the

tower (M̄ ′, ā, N̄) is a continuous extension of (M̄, ā, N̄), as required. �
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